首页> 外文会议>Polymer-based materials and composites - synthesis, assembly, properties and applications >Multiscale Modeling of Reinforced Epoxy Resins by Carbon Nanotubes and Graphene
【24h】

Multiscale Modeling of Reinforced Epoxy Resins by Carbon Nanotubes and Graphene

机译:碳纳米管和石墨烯对增强环氧树脂的多尺度建模

获取原文
获取原文并翻译 | 示例

摘要

Nanocomposites are of increasing interest due to their unique structural, electronic, and thermal properties. Simultaneously, multiscale molecular modeling is becoming more robust. Therefore computational models are able to be examined with increased accuracy, complexity, and dimension. Graphene based molecules are lauded for their conductive properties as well as their architecture-like geometry which may allow bottom up nanoscale fabrication of nanoscopic structures. Furthermore, these macrocycled molecules allow high interactivity with other molecules including highly tensiled polymers that yield other novel supramolecular structures when interacted. These supramolecular structures are being investigated in lieu of a variety of potential applications. Nanocomposites of cured epoxy resin reinforced by single-walled carbon nanotubes exhibit a plethora of interesting behavior at the molecular level. A fundamental issue is how the self-organized dynamic structure of functional molecular systems affects the interactions of the nano-reinforced composites. A combination of force-field based molecular dynamics and local density-functional calculations shows that the stacking between the aromatic macrocycle and the surface of the SWNTs manifests itself via increased interfacial binding. First-principles calculations on the electronic structures further reveal that there exists distinct level hybridization behavior for metallic and semiconducting nanotubes. In addition there is a monatomic increase in binding energy with an increase in the nanotube diameter. The simulation studies suggest that graphene nanoplatelets are potentially the best fillers of epoxy matrices. The implications of these results for understanding dispersion mechanism and future nanocomposite developments are discussed.
机译:纳米复合材料因其独特的结构,电子和热性能而受到越来越多的关注。同时,多尺度分子建模变得越来越强大。因此,能够以提高的准确性,复杂性和尺寸检查计算模型。基于石墨烯的分子因其导电性能以及类似于体系结构的几何形状而受到称赞,这可能允许自下而上的纳米级纳米结构的制造。此外,这些大环分子允许与包括高拉伸聚合物的其他分子进行高相互作用,所述高拉伸聚合物在相互作用时会产生其他新颖的超分子结构。这些超分子结构正在研究中,以代替各种潜在的应用。由单壁碳纳米管增强的固化环氧树脂的纳米复合材料在分子水平上表现出许多有趣的行为。一个基本问题是功能分子系统的自组织动态结构如何影响纳米增强复合材料的相互作用。基于力场的分子动力学和局部密度函数计算的结合表明,芳香族大环与单壁碳纳米管表面之间的堆积通过增加的界面结合而表现出来。电子结构的第一性原理计算进一步表明,金属和半导体纳米管存在明显的能级杂交行为。另外,随着纳米管直径的增加,结合能单原子增加。模拟研究表明,石墨烯纳米片可能是环氧基质的最佳填充剂。讨论了这些结果对于理解分散机理和未来纳米复合材料开发的意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号