首页> 外文会议>Physical, electroanalytical, and bioanalytical electrochemistry >Electrochemical Quartz Crystal Microbalance Technique in Sonoelectrochemistry
【24h】

Electrochemical Quartz Crystal Microbalance Technique in Sonoelectrochemistry

机译:声电化学中的电化学石英晶体微天平技术

获取原文
获取原文并翻译 | 示例

摘要

Ultrasound has been increasingly applied in chemistry and electrochemistry in the past decades (1-4). The major effects of ultrasound in a liquid medium are cavitation associated with microstreaming and acoustic streaming (1, 4-12). Cavitation is the formation of bubbles in the liquid during the rarefaction cycle of the ultrasonic wave. Bubbles can grow over several periods and finally collapse in an adiabatic manner (so-called transient cavitation) (6, 13, 14). The collapse leads locally to very high temperatures and pressures ("hot spot"), high heating and cooling rates, and shock waves in the surrounding liquid (4, 5, 7,12,13, 15-18). Due to the extreme conditions hydroxyl and hydrogen radicals are formed (18-20). In the proximity of a surface, cavitation causes strong microstreaming either by replacement of the volume taken up by the bubble by liquid (21) or by the formation of a strong microjet during bubble collapse (8,13,17, 22-24). Acoustic streaming is convection induced in the liquid in the direction of the traveling wave by momentum transfer (24-26). The effects of ultrasound on electrochemistry are caused by surface cavitation leading to cleaning and activation of the electrode surface, possibly a local temperature increase, and to the extreme improvement in mass transport by acoustic streaming and microstreaming that surpasses conventional stirring methods and the rotating disc electrode by far (1-3, 24-30). This can cause a change from mass transport to charge transfer control, influence nucleation and growth processes, and alter selectivities if alternate electrode reactions are possible (1-3,24-30).
机译:在过去的几十年中,超声波已越来越多地应用于化学和电化学领域(1-4)。超声波在液体介质中的主要作用是与微流和声流相关的气蚀现象(1、4-12)。空化是在超声波的稀疏循环期间液体中气泡的形成。气泡可能会在多个时期内增长,并最终以绝热方式崩溃(所谓的瞬时空化)(6、13、14)。崩溃局部导致非常高的温度和压力(“热点”),高的加热和冷却速率以及周围液体中的冲击波(4、5、7、12、13、15-18)。由于极端条件,会形成羟基和氢自由基(18-20)。在表面附近,气蚀通过用液体(21)代替气泡吸收的体积或在气泡破裂过程中形成强力的微喷(8、13、17、22-24)而引起强的微流。声流是通过动量传递(24-26)在行波方向上在液体中引起的对流。超声波对电化学的影响是由表面空化导致的,该空化导致电极表面的清洁和活化,可能会导致局部温度升高,并且通过声流和微流产生的传质性能大大提高,其超越了传统的搅拌方法和旋转圆盘电极到目前为止(1-3,24-30)。这可能导致从质量传输到电荷转移控制的变化,影响成核和生长过程,并且如果可能发生交替的电极反应,则会改变选择性(1-3,24-30)。

著录项

  • 来源
  • 会议地点 Vienna(AT);Vienna(AT)
  • 作者单位

    Institut für Metallurgie, Technische Universitaet Clausthal, Clausthal-Zellerfeld,Germany;

    Institut für Metallurgie, Technische Universitaet Clausthal, Clausthal-Zellerfeld,Germany;

    Institut für Metallurgie, Technische Universitaet Clausthal, Clausthal-Zellerfeld,Germany School of Chemical Engineering, National Technical University of Athens,Zografos Campus, Athens, Greece;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 电化学工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号