【24h】

1310nm high-power, broad-band superluminenscent laser diode for OCT appication

机译:用于OCT的1310nm高功率宽带超发光激光二极管

获取原文
获取原文并翻译 | 示例

摘要

Super-luminescent laser diodes (SLD) in 800 to 1300 nm wavelength windows have been widely used in optical coherence tomography (OCT) systems.The imaging resolution of OCT systems is proportional to the bandwidth of the SLD light source. Here we present a new design to achieve broad bandwidth (> 100nm at 1310nm) in one chip by using two types of quantum wells.The bandwidth of an SLD with a single active region is determined by the material bandwidth, confinement factor, and the length of the active region. Neglecting spatial hole burning (SHB), the spectral density of amplified spontaneous emission (ASE) can be the function of cavity length and spectral density of spontaneous emission and net gain. The main factor that limits the ASE bandwidth is the net gain. The bandwidth of net gain has to be larger than 200 nm to obtain a 100 nm wide ASE spectrum if the ASE power is larger than several mW.SLDs usually work at very high pump current (> 400mA) to achieve high output power. From simulations, we found the level of electron injection mainly determines the material gain. At the high injection level, large bandgap quantum wells can get high gain and dominate the spectrum if the improper design is used. So in our design, we put the small bandgap quantum wells at the N side to make the electron distribution in favor of long-wavelength material. Thus, and will be balanced at high current injection level (> 550mA). Figure 7 shows the measured spectrum of such structure. The achieved spectral width is larger than l00nm and out put power is larger than 5 mW.
机译:800至1300 nm波长窗口的超发光激光二极管(SLD)已广泛用于光学相干断层扫描(OCT)系统中.OCT系统的成像分辨率与SLD光源的带宽成正比。在这里,我们提出一种新的设计,以通过使用两种类型的量子阱在一个芯片中实现宽带宽(在1310nm处大于100nm)。具有单个有源区的SLD的带宽取决于材料带宽,限制因子和长度活动区域。忽略空间空穴燃烧(SHB),放大的自发发射(ASE)的光谱密度可能是腔长,自发发射的光谱密度和净增益的函数。限制ASE带宽的主要因素是净增益。如果ASE功率大于几mW,则净增益带宽必须大于200 nm才能获得100 nm宽的ASE光谱.SLD通常在很高的泵浦电流(> 400mA)下工作以实现高输出功率。通过仿真,我们发现电子注入的水平主要决定材料的增益。在高注入水平下,如果使用的设计不当,大带隙量子阱将获得高增益并支配频谱。因此,在我们的设计中,我们将小带隙量子阱放在N侧,以使电子分布有利于长波长材料。因此,它将在高电流注入水平(> 550mA)下保持平衡。图7显示了这种结构的实测光谱。达到的光谱宽度大于100nm,输出功率大于5mW。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号