首页> 外文会议>Advances in Patterning Materials and Processes XXXVI >Mitigation of Line Edge Roughness and Line Width Roughness in Block Copolymer Directed Self-Assembly through Polymer Composition and Molecular Weight Manipulation
【24h】

Mitigation of Line Edge Roughness and Line Width Roughness in Block Copolymer Directed Self-Assembly through Polymer Composition and Molecular Weight Manipulation

机译:通过聚合物组成和分子量控制缓解嵌段共聚物定向自组装中线边缘粗糙度和线宽粗糙度

获取原文
获取原文并翻译 | 示例

摘要

The semiconductor community is well aware of the challenges that exist in developing lithographic methodsthat can pattern features at sub-20 nm periodic feature spacing (pitch, L_0). Optical lithography already utilizescomplex multiple patterning schemes to overcome diffraction limitations at 193-nm exposure wavelengths, andthe delayed insertion of EUV lithography will likely require the use of multiple patterning or other assistiveprocesses to further reduce the achievable feature sizes. An alternative to these techniques employs the directedself-assembly (DSA) of block copolymers. Block copolymers (BCPs) can naturally micro-phase separate intomorphologies such as lamellae, cylinders, spheres, and gyroids at length scales down to sub-10 nm dimensions.Using the ability of BCPs to micro-phase separate in conjunction with alignment methods such as graphoepitaxyand chemoepitaxy to produce well-ordered structures, a process referred to as DSA, offers a possible methodfor producing sub-20 nm features in conjunction with optical patterning processes at greatly reduced cost andcomplexity. One of the many challenges in implementing line-space type DSA processes is the lack of methods foreffective modulation and tuning of the pattern pitch (L_0) produced by a given BCP. Previous studies have shownthat blending homopolymer into the BCP thin films can allow for tuning of both: (1) L_0 to be larger than thatprovided naturally by the BCP's molecular weight (MW) and (2) the relative size line-space size ratio. However,this tuning ability comes at the expense of increased line edge roughness (LER) and line width roughness (LWR).It has also been shown that either higher or lower MW BCP can be blended into a primary BCP in order tomodulate and tune the pattern pitch produced from the BCP mixture, but the effects of this BCP blending onpattern LER and LWR have not been explored or reported in detail. In this study, coarse-grained moleculardynamics simulations of BCP DSA on a chemoepitaxial underlayer were implemented to characterize the impactsthat blending controlled amounts of two different MW BCPs together have on DSA pattern LER and LWR. Theblends shown here had LER and LWR values as much as 20% higher than those of pure, monodisperse BCPs;however, reducing the MW difference between the 2 BCPs could reduce this effect.
机译:半导体界非常清楚开发光刻方法所面临的挑战,该方法可以在20 nm以下的周期性特征间距(间距,L_0)处对特征进行图案化。光学光刻已经利用复杂的多种构图方案来克服193 nm曝光波长处的衍射限制,并且EUV光刻的延迟插入将可能需要使用多种构图或其他辅助工艺来进一步减少可达到的特征尺寸。这些技术的替代方法是使用嵌段共聚物的定向\自组装(DSA)。嵌段共聚物(BCP)可以自然地微相分离成薄片,圆柱体,球体和螺旋体等形态,其长度尺度可缩小至10 nm以下。\ r \ n利用BCP进行微相分离的能力结合对准方法(例如石墨外延\ r \ n和化学外延)以产生有序的结构,称为DSA的过程提供了一种可能的方法,可以结合光学构图过程以显着降低的方式产生20 nm以下的特征费用和\ r \ n复杂性。实施行空间型DSA过程的众多挑战之一是缺乏有效调制和调整给定BCP产生的图案间距(L_0)的方法。先前的研究表明\ r \ n将均聚物掺入BCP薄膜中可同时调整两者:(1)L_0大于BCP的分子量(MW)自然提供的L_0和(2)相对分子量大小行空间大小比率。但是,这种调整能力是以增加的线边缘粗糙度(LER)和线宽粗糙度(LWR)为代价的。\ r \ n还显示出,可以将更高或更低的MW BCP混合到主BCP中为了调制和调整从BCP混合物产生的图案间距,但是尚未详细探讨或报告这种BCP混合对图案LER和LWR的影响。在这项研究中,对化学外延底层上的BCP DSA进行了粗粒度的分子动力学模拟,以表征将两种不同分子量的BCP掺混在一起对DSA模式LER和LWR的影响。此处显示的掺混物的LER和LWR值比纯单分散BCP的LER和LWR值高20%;但是,减小两个BCP之间的MW差异可以减少这种影响。

著录项

  • 来源
    《Advances in Patterning Materials and Processes XXXVI》|2019年|109601M.1-109601M.18|共18页
  • 会议地点 0277-786X;1996-756X
  • 作者单位

    Department of Chemical and Biomedical Engineering, University of South Florida, 4202 E. Fowler Ave. ENB 118, Tampa, FL, USA 33620;

    School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, GA, USA 30332;

    Department of Chemical and Biomedical Engineering, University of South Florida, 4202 E. Fowler Ave. ENB 118, Tampa, FL, USA 33620 clhenderson@usf.edu;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号