首页> 外文会议>Optical trapping and optical micromanipulation IX. >Induction of sustained glycolytic oscillations in single yeast cells using microfluidics and optical tweezers
【24h】

Induction of sustained glycolytic oscillations in single yeast cells using microfluidics and optical tweezers

机译:使用微流控和光镊诱导单个酵母细胞中持续的糖酵解振荡

获取原文
获取原文并翻译 | 示例

摘要

Yeast glycolytic oscillations have been studied since the 1950s in cell free extracts and in intact cells. Until recently,sustained oscillations have only been observed in intact cells at the population level. The aim of this study was toinvestigate sustained glycolytic oscillations in single cells.Optical tweezers were used to position yeast cells in arrays with variable cell density in the junction of a microfluidicflow chamber. The microfluidic flow chambers were fabricated using soft lithography and the flow rates in the differentinlet channels were individually controlled by syringe pumps. Due to the low Reynolds number, the solutions mixed bydiffusion only. The environment in the junction of the chamber could thus be controlled by changing the flow rates in theinlet channels, with a complete change of environment within 2 s. The optimum position of the cell array was determinedby simulations, to ensure complete coverage of the intended solution without any concentration gradients over the cellarray. Using a DAPI filter set, the NADH auto fluorescence could be monitored in up to 100 cells simultaneously.Sustained oscillations were successfully induced in individual, isolated cells within specific flow rates andconcentrations of glucose and cyanide. By changing the flow rates without changing the surrounding solution, it wasfound that the cell behavior was dependent on the concentration of chemicals in the medium rather than the flow rates inthe range tested. Furthermore, by packing cells tightly, cell-to-cell interaction and synchronization could be studied.© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
机译:自1950年代以来,已经在无细胞提取物中和完整细胞中研究了酵母的糖酵解振荡。直到最近,仅在种群水平的完整细胞中观察到了持续的振荡。这项研究的目的是调查单个细胞中持续的糖酵解振荡。使用光学镊子将酵母细胞放置在微流体流室交界处具有可变细胞密度的阵列中。使用软光刻法制造微流体流动室,并通过注射泵分别控制不同入口通道中的流速。由于雷诺数低,溶液只能通过扩散混合。因此,可以通过改变入口通道中的流速来控制腔室接合处的环境,在2 s内完全改变环境。通过模拟确定细胞阵列的最佳位置,以确保目标溶液的完全覆盖,而在细胞阵列上没有任何浓度梯度。使用DAPI滤光片组,可以同时监测多达100个细胞中的NADH自发荧光。在特定流速和葡萄糖和氰化物浓度下,成功地在单个分离的细胞中诱导了持续振荡。通过改变流速而不改变周围溶液,发现细胞行为取决于介质中化学物质的浓度而不是所测试范围内的流速。此外,通过紧密包装细胞,可以研究细胞间的相互作用和同步。©(2012)版权属于光电仪器工程师协会(SPIE)。摘要的下载仅允许个人使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号