首页> 外文会议>Optical microlithography XXVI >High Speed and Flexible PEB 3D Diffusion Simulation based on Sylvester Equation
【24h】

High Speed and Flexible PEB 3D Diffusion Simulation based on Sylvester Equation

机译:基于Sylvester方程的高速灵活PEB 3D扩散模拟

获取原文
获取原文并翻译 | 示例

摘要

Post exposure bake (PEB) Diffusion effect is one of the most difficult issues in modeling chemically amplified resists. These model equations result in a system of nonlinear partial differential equations describing the time rate of change reaction and diffusion. Verifying such models are difficult, so numerical simulations are needed to solve the model equations. In this paper, we propose a high speed 3D resist image simulation algorithm based on a novel method to solve the PEB Diffusion equation. Our major discovery is that the matrix formulation of the diffusion equation under the Crank-Nicolson scheme can be derived into a special form, AX+XB=C, where the X matrix is a 3D resist image after diffusion effect, A and B matrices contain the diffusion coefficients and the space relationship between directions x, y and z. These matrices are sparse, symmetric and diagonal dominant. The C matrix is the last time-step resist image. The Sylvester equation can be reduced to another form as (I(×)A + B~T(×)I) X =C, in which the operator (×) is the Kronecker product notation. Compared with a traditional convolution method, our method is more useful in a way that boundary conditions can be more flexible. From our experimental results, we see that the error of the convolution method can be as high as 30% at borders of the design pattern. Furthermore, since the PEB temperature may not be uniform at multi-zone PEB, the convolution method might not be directly applicable in this scenario. Our method is about 20 times faster than the convolution method for a single time step (2 seconds) as illustrated in the attached figure. To simulate 50 seconds of the flexible PEB diffusion process, our method only takes 210 seconds with a convolution set up for a 1240×1240 working area. We use the typical 45nm immersion lithography in our work. The exposure wavelength is set to 193nm; the NA is 1.3775; and the diffusion coefficient is 1.455×10~(-17)m~2/s at PEB temperature 150°C along with PEB time 50 seconds with image resolution setup to be 1240×1240.
机译:曝光后烘烤(PEB)扩散效应是化学放大抗蚀剂建模中最困难的问题之一。这些模型方程导致一个非线性偏微分方程系统,描述了变化反应和扩散的时间速率。验证这种模型很困难,因此需要数值模拟来求解模型方程。在本文中,我们提出了一种基于新方法的高速3D抗蚀剂图像仿真算法,用于求解PEB扩散方程。我们的主要发现是,可以将Crank-Nicolson方案下扩散方程的矩阵公式推导为特殊形式AX + XB = C,其中X矩阵是经过扩散效应后的3D抗蚀剂图像,A和B矩阵包含方向x,y和z之间的扩散系数和空间关系。这些矩阵是稀疏的,对称的和对角线的。 C矩阵是最后一个时间步抗蚀剂图像。 Sylvester方程可以简化为(I(×)A + B〜T(×)I)X = C的另一种形式,其中运算符(×)是Kronecker乘积符号。与传统的卷积方法相比,我们的方法在边界条件可以更灵活的方面更有用。从我们的实验结果可以看出,在设计模式的边界处,卷积方法的误差可能高达30%。此外,由于PEB温度在多区域PEB上可能不一致,因此卷积方法可能不适用于这种情况。如图所示,在单个时间步长(2秒)内,我们的方法比卷积方法快约20倍。为了模拟50秒的柔性PEB扩散过程,我们的方法只需要210秒,而卷积设置为1240×1240的工作区域。我们在工作中使用典型的45nm浸没式光刻技术。曝光波长设置为193nm; NA为1.3775; PEB温度为150°C时扩散系数为1.455×10〜(-17)m〜2 / s,PEB时间为50秒,图像分辨率设置为1240×1240。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号