首页> 外文会议>Optical diagnostics and sensing XI: toward point-of-care diagnosics; and Design and performance validation of phantoms used in conjunction with optical measurement of tissue III >An Optical Device Employing Multi-Wavelength Photoplethysmography for Non-Invasive In Vivo Monitoring of Optically Active Nanoparticles
【24h】

An Optical Device Employing Multi-Wavelength Photoplethysmography for Non-Invasive In Vivo Monitoring of Optically Active Nanoparticles

机译:使用多波长光体积描记法对光学活性纳米粒子进行无创体内监测的光学设备。

获取原文
获取原文并翻译 | 示例

摘要

Researchers employ increasingly complex sub-micron particles for oncological applications to deliver bioactive therapeutic or imaging compounds to known and unknown in vivo tumor targets. These particles are often manufactured using a vast array of compounds and techniques resulting in a complex architecture, which can be quantified ex vivo by conventional metrology and chemical assays. In practice however, experimental homogeneity using nanoparticles can be difficult to achieve. While several imaging techniques have been previously shown to follow the accumulation of nanoparticles into tumor targets, a more rapid sensor that provides a quantifiable estimate of dose delivery and short-term systemic response could increase the clinical efficacy and greatly reduce the variability of these treatments. We have developed an optical device, the pulse photometer, that when placed on an accessible location will estimate the vascular concentration of near-infrared extinguishing nanoparticles in murine subjects. Using a technique called multi-wavelength photoplethysmography, the same technique used in pulse oximetry, our pulse photometer requires no baseline for each estimate allowing it to be taken on and off of the subject several times during experiments employing long circulating nanoparticles. We present a formal study of our prototype instrument in which circulation half-life and nanoparticle concentration of gold nanorods is determined in murine subjects with the aid of light anesthesia. In this study, we show good agreement between vascular nanorod concentrations (given in optical density) as determined by our device and with UV-VIS spectrophotometry using low volume blood samples.
机译:研究人员将越来越复杂的亚微米颗粒用于肿瘤治疗,以将生物活性的治疗或成像化合物递送至已知和未知的体内肿瘤靶标。这些颗粒通常使用大量化合物和技术制造,从而形成复杂的结构,可以通过常规的计量学和化学分析离体定量。然而,实际上,使用纳米颗粒的实验均匀性可能难以实现。尽管先前已经显示出几种成像技术可以追踪纳米粒子向肿瘤靶标中的积累,但是提供定量估计剂量输送和短期全身反应的更快速的传感器可以提高临床疗效并大大降低这些治疗方法的可变性。我们开发了一种光学设备,即脉冲光度计,当将其放置在可及的位置时,它将估算鼠科动物中近红外灭火纳米颗粒的血管浓度。使用一种称为多波长光体积描记法的技术(与脉搏血氧饱和度测定法中使用的技术相同),我们的脉搏光度计不需要为每个估计值设置基线,从而在使用长循环纳米粒子的实验过程中,可以将其多次从受试者身上穿脱。我们对原型仪器进行了正式研究,其中借助轻度麻醉确定了鼠科动物体内循环半衰期和金纳米棒的纳米颗粒浓度。在这项研究中,我们显示了由我们的设备确定的血管纳米棒浓度(以光密度给出)与使用少量血液样本的UV-VIS分光光度法之间的良好一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号