首页> 外文会议>New approaches in biomedical spectroscopy >Nonlinear Interferometric Vibrational Imaging: A Method for Distinguishing Coherent Anti-Stokes Raman Scattering from Nonresonant Four-Wave-Mixing Processes and Retrieving Raman Spectra Using Broadband Pulses
【24h】

Nonlinear Interferometric Vibrational Imaging: A Method for Distinguishing Coherent Anti-Stokes Raman Scattering from Nonresonant Four-Wave-Mixing Processes and Retrieving Raman Spectra Using Broadband Pulses

机译:非线性干涉振动成像:一种区分非共振四波混合过程相干反斯托克斯拉曼散射并使用宽带脉冲检索拉曼光谱的方法

获取原文
获取原文并翻译 | 示例

摘要

When utilizing broadband, short pulses to stimulate Coherent Anti-Stokes Raman Scattering (CARS), frequently the peak power is sufficient to excite other nonlinear, nonresonant processes in the material. These processes produce a four-wave-mixing component in the same frequency band as the CARS signal, so that the two signal types cannot be distinguished on the basis of frequency band alone. Typically in biological materials, the nonresonant component produced by the bulk medium can overwhelm the CARS signals produced by the usually much lower concentration target molecular species. Resonant processes can be distinguished from nonresonant processes in that molecular vibrations and rotations typically last longer than a picosecond, while nonresonant processes are not persistent and last shorter than 10 fs. Interferometry allows the arrival time of the signal to be determined to extremely high accuracy, limited by the bandwidth of the reference pulse. Because resonances are persistent, they can produce anti-Stokes radiation that persists after the nonresonant excitation is produced. Interferometry can distinguish the later arrival of the anti-Stokes radiation and therefore distinguish the resonant and nonresonant signals.rnMore complicated pulse-shaping and interferometry schemes can allow additional flexibility to allow simultaneous sampling of the Raman spectrum while rejecting the nonresonant component. This technique enables an entire region of the Raman spectrum of a sample to be measured with a single brief broadband pulse.
机译:当利用宽带短脉冲来激发相干反斯托克斯拉曼散射(CARS)时,峰值功率通常足以激发材料中的其他非线性,非共振过程。这些过程在与CARS信号相同的频带中产生四波混频分量,因此无法仅根据频带来区分这两种信号类型。通常,在生物材料中,本体介质产生的非共振成分会压倒通常浓度低得多的目标分子物质产生的CARS信号。共振过程与非共振过程的区别在于,分子振动和旋转通常持续时间超过皮秒,而非共振过程不是持久的,并且持续时间短于10 fs。干涉测量法可以将信号的到达时间确定为极高的精度,受参考脉冲的带宽限制。因为共振是持久的,所以它们可以产生反斯托克斯辐射,该辐射在产生非共振激发后仍然存在。干涉测量法可以区分反斯托克斯辐射的较晚到达,因此可以区分共振和非共振信号。更复杂的脉冲整形和干涉测量方案可以提供更大的灵活性,以允许同时采样拉曼光谱,同时抑制非共振分量。这项技术可以用一个简单的宽带脉冲测量样品拉曼光谱的整个区域。

著录项

  • 来源
  • 会议地点 Honolulu HI(US);Honolulu HI(US)
  • 作者单位

    Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 405 North Mathews, Urbana, IL 61801;

    Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 405 North Mathews, Urbana, IL 61801;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物工程学(生物技术);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号