【24h】

A RESIDUAL BASED VARIATIONAL METHOD FOR REDUCING DISPERSION ERROR IN FINITE ELEMENT METHODS

机译:减少有限元方法中色散误差的基于残差的变分方法

获取原文
获取原文并翻译 | 示例

摘要

A difficulty of the standard Galerkin finite element method has been the ability to accurately resolve oscillating wave solutions at higher frequencies. Many alternative methods have been developed including high-order methods, stabilized Galerkin methods, multi-scale variational methods, and other wave-based discretization methods. In this work, consistent residuals, both in the form of least-squares and gradient least-squares are linearly combined and added to the Galerkin variational Helmholtz equation to form a new generalized Galerkin least-squares method (GGLS). By allowing the stabilization parameters to vary spatially within each element, we are able to select optimal parameters which reduce dispersion error for all wave directions from second-order to fourth-order in nondimensional wavenum-ber; a substantial improvement over standard Galerkin elements. Furthermore, the stabilization parameters are frequency independent, and thus can be used for both time-harmonic solutions to the Helmholtz equation as well as direct time-integration of the wave equation, and eigenfrequency/eigenmodes analysis. Since the variational framework preserves consistency, high-order accuracy is maintained in the presence of source terms. In the case of homogeneous source terms, we show that our consistent variational framework is equivalent to integrating the underlying stiffness and mass matrices with optimally selected numerical quadrature rules. Optimal GGLS stabilization parameters and equivalent quadrature rules are determined for several element types including: bilinear quadrilateral, linear triangle, and lin- ear tetrahedral elements. Numerical examples on unstructured meshes validate the expected high-order accuracy.
机译:标准Galerkin有限元方法的一个难点是能否在较高频率下精确解析振荡波解。已经开发出许多替代方法,包括高阶方法,稳定的Galerkin方法,多尺度变分方法以及其他基于波的离散化方法。在这项工作中,以最小二乘法和梯度最小二乘法形式的一致残差被线性组合并添加到Galerkin变分亥姆霍兹方程中,以形成新的广义Galerkin最小二乘法(GGLS)。通过使稳定参数在每个元素内的空间变化,我们能够选择最佳参数,以减少无量纲波中从二阶到四阶的所有波方向的色散误差。对标准的Galerkin元素进行了重大改进。此外,稳定参数与频率无关,因此可用于亥姆霍兹方程的时谐解以及波动方程的直接时间积分和本征频率/本征模分析。由于变体框架保留了一致性,因此在存在源项的情况下可以保持高阶准确性。在齐次源项的情况下,我们表明我们一致的变分框架等效于将基础刚度和质量矩阵与最佳选择的数值正交规则进行集成。确定了几种元素类型的最佳GGLS稳定参数和等效的正交规则,包括:双线性四边形,线性三角形和线性四面体元素。非结构化网格上的数值示例验证了预期的高阶精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号