【24h】

CATALYTIC BIOSENSORS BASED ON CONDUCTING POLYMERS

机译:基于导电聚合物的催化生物传感器

获取原文
获取原文并翻译 | 示例

摘要

The effective combination of unique properties of biologically active polymers (biopolymers) and physical methods in analytical devices may provide the basis for the direct detection of wide range of analytes..with great sensitivity and specificity. The first conducting polymer, polyacetylene, was discovered by MacDiarmid, Shirakawa, and Heeger. They brought the unique properties of conjugated polymers to the fore in 1977 when they discovered that chemical doping of these materials resulted in increases in electronic conductivity by over several orders of magnitude (1). Since then, electronically conducting materials based on π-π conjugated (conducting) polymers have been applied in a number of diverse applications e.g. sensors, biomaterials, light-emitting diodes, polymeric actuators and corrosion protection agents. Some conducting polymers like polyaniline, polytiophene or polypyrrole are biocompatible and cause minimal and reversible disturbance to the working environment; protecting electrodes from fouling and/or interfering with electrochemically active materials (2). The potential usefulness of these new materials for a wide range of biosensors has been well proven. Such conducting polymers may ultimately be involved with nano-scaling of individual biosensors and the development of so called "Lab on the Chip" systems. Enzymatic biosensors based on polyacetylene, polypyrrole and polyaniline will be reviewed in the light of: (ⅰ) introduction of different subclasses of enzymes in design of amperometric biosensors (3); (ⅱ) the application of various principally different forms of redox mediators - ranging from soluble to wired to polymeric or protein backbone (4); (ⅲ) comparison of immobilization methods (5). Adsorption, covalent attachment and entrapment within conducting polymer backbones will be compared and catalytic biosensor design discussed.
机译:生物活性聚合物(生物聚合物)的独特特性与物理方法在分析设备中的有效结合可以为直接检测各种分析物提供基础,而且灵敏度和特异性都很高。 MacDiarmid,Shirakawa和Heeger发现了第一种导电聚合物聚乙炔。他们在1977年发现了共轭聚合物的独特性能,当时他们发现对这些材料进行化学掺杂会导致电子电导率增加几个数量级(1)。从那时起,基于π-π共轭(导电)聚合物的电子导电材料已被用于许多不同的应用中,例如,电子应用。传感器,生物材料,发光二极管,聚合物致动器和腐蚀保护剂。某些导电聚合物,例如聚苯胺,聚噻吩或聚吡咯具有生物相容性,对工作环境的干扰最小且可逆。防止电极结垢和/或干扰电化学活性材料(2)。这些新材料对各种生物传感器的潜在用途已得到充分证明。这种导电聚合物最终可能涉及单个生物传感器的纳米级规模化以及所谓的“芯片实验室”系统的开发。将根据以下方面对基于聚乙炔,聚吡咯和聚苯胺的酶生物传感器进行审查:(ⅰ)在安培生物传感器的设计中引入不同的酶亚类(3); (ⅱ)各种主要不同形式的氧化还原介体的应用-从可溶性到有线,再到聚合物或蛋白质骨架(4); (ⅲ)固定方法的比较(5)。将比较导电聚合物主链中的吸附,共价连接和截留,并讨论催化生物传感器的设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号