首页> 外文会议>Nanoengineered Assemblies and Advanced Micro/Nanosystems >Controlling the Sensing Volume of Metal Nanosphere Molecular Sensors
【24h】

Controlling the Sensing Volume of Metal Nanosphere Molecular Sensors

机译:控制金属纳米球分子传感器的传感体积

获取原文
获取原文并翻译 | 示例

摘要

Using calculated UV-vis spectra of Au nanoparticles and nanoshells with dielectric overlayers, we have shown that the environmental dielectric sensitivity of the particle dipole plasmon band is confined to dielectric variations in the environment close to the particle surface. We have characterized the extent of the sensing volume of both single component particles and dielectric core/ metal shell particles and have concluded that the thickness of the sensitive region is controlled primarily by the size and structure of the nanoparticle or shell. For the smallest nanoparticles, i.e. particles that behave as electrostatic dipoles, the thickness of the dipolar sensing volume grows linearly with particle size. Larger nanoparticles, i.e. particles large enough to feel the nonuniformity of the incident field, have sensing volumes not much thicker than those of smaller particles. We have also shown that the size at which the sensing volume begins to be constrained is a function of the structure of the nanoparticle; Au nanoparticles with dielectric cores, i.e. nanoshells, display proportional growth of the sensing thickness to larger particle sizes than exhibited by solid Au nanoparticles and thus provide more extensive tunability of the sensing thickness. We understand this phenomenon to be a consequence of the longer wavelength (and hence, more spatially uniform nature of the incident fields) of the exciting light in nanoparticle systems that have lower energy resonances; in ongoing work, we are exploring this notion. Thus, while the primary factor controlling the sensing volumes of particle based dielectric sensors is particle size, resonant wavelength (which is the primary controlling factor in planar SPR detection systems), also plays a role. We have observed, as well, that in nanoparticle-based dielectric sensing systems, the extent of the sensing volume is a function of the refractive index contrast of the layer being detected. Elsewhere we explore this more fully. Within the range of dielectric variation relevant for biomolecule detection, however, variations in sensing volume with dielectric contrast are small and interfere not at all with the general property that nanoparticle SPR sensors, unlike planar SPR sensors, have sensing thicknesses that are comparable in size to target molecule monolayers. The tailorability of nanoparticle sensing thickness demonstrated herein should play a significant role in optimization of these systems for specific applications. Future work will extend quantitative studies of sensing volume to nonspherical particles. However, we expect the principles illuminated here to provide a basis for an understanding of what controls sensing volumes in nanostructures, generally.
机译:使用具有介电覆盖层的Au纳米颗粒和纳米壳的计算紫外可见光谱,我们已经表明,粒子偶极等离子体激元带的环境介电灵敏度仅限于接近粒子表面的环境中的介电变化。我们已经表征了单组分颗粒和介电核/金属壳颗粒的感测体积的程度,并得出结论,敏感区域的厚度主要由纳米颗粒或壳的大小和结构控制。对于最小的纳米粒子,即充当静电偶极子的粒子,偶极感应体积的厚度随粒径而线性增长。较大的纳米粒子,即足够大以感觉到入射场不均匀的粒子,其感测体积不会比较小的粒子厚。我们还表明,传感体积开始受到限制的大小是纳米颗粒结构的函数;具有介电核(即纳米壳)的金纳米颗粒显示出与固体金纳米颗粒相比,传感厚度成比例增长到更大的粒径,因此提供了更广泛的传感厚度可调性。我们理解这种现象是由于具有较低能量共振的纳米粒子系统中的激发光具有更长的波长(因此,入射场的空间均匀性更强)导致的。在正在进行的工作中,我们正在探索这一概念。因此,虽然控制基于粒子的介电传感器的感应体积的主要因素是粒度,但谐振波长(这是平面SPR检测系统的主要控制因素)也起着作用。我们还观察到,在基于纳米粒子的介电传感系统中,传感体积的程度是被检测层的折射率对比度的函数。在其他地方,我们将对此进行更全面的探讨。然而,在与生物分子检测相关的介电变化范围内,感应量随介电对比度的变化很小,并且根本不会干扰纳米粒子SPR传感器(与平面SPR传感器不同)具有可与尺寸媲美的感应厚度的一般属性目标分子单层。本文证明的纳米颗粒感测厚度的可定制性在针对特定应用的这些系统的优化中应发挥重要作用。未来的工作将把对感应体积的定量研究扩展到非球形颗粒。但是,我们希望这里所阐明的原理能够为理解什么通常控制纳米结构中的体积提供基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号