首页> 外文会议>Metallization: Performance and Reliability Issues for VLSI and ULSI >Stress-induced voiding in aluminum alloy metallizations
【24h】

Stress-induced voiding in aluminum alloy metallizations

机译:铝合金金属中应力引起的空洞

获取原文
获取原文并翻译 | 示例

摘要

Abstract: Fabrication of microelectronic metal interconnects generates a state of tensile stress in the metal. For constant metal and passivation film thicknesses, the magnitude of stress increases as linewidth decreases until the metal forms internal voids in order to relax. Such voids can grow large enough to sever lines, degrading chip functionality and reliability. For narrow lines, constraints from the passivation layer permit relaxation through void growth to occur only by diffusion. This phenomenon is known as stress migration, by analogy to voiding produced by high electrical current (electromigration). To study the influence of alloy composition and microstructure on diffusion in Al-based interconnects with and without Ti underlayers, interconnects with different amounts of Si, Cu, and oxygen were passivated with PECVD SiN$-x$/ and aged at 150$DGR@C for 1000 hr in air. Samples were also electromigration-stressed to highlight possible interactive variables. Al-Cu produces fewer voids and longer electromigration lifetimes than pure Al. High ($GRT 2%) Si appears to promote void formation by rapid grain boundary diffusion and precipitate growth, but does not necessarily decrease electromigration lifetime. Low Si ($LS 1%) appears to be beneficial for extending electromigration lifetime and reducing the total volume of voiding, but causes large void sizes which lead to failure. The effect of oxygen contamination on stress migration is generally detrimental. Ti underlayers are redundant conductors which greatly increase electromigration life, but increase individual void size. A model for thermal dependence of atomic flux, used in conjunction with thermal stress hysteresis measurements of metal films, describes a wide range of voiding behavior. !23
机译:摘要:微电子金属互连的制造在金属中产生拉伸应力状态。对于恒定的金属和钝化膜厚度,应力的大小会随着线宽的减小而增加,直到金属形成内部空隙以便松弛。这样的空隙可能会增大到足以切断线路的长度,从而降低芯片的功能和可靠性。对于窄线,来自钝化层的约束允许通过空隙生长而引起的弛豫仅通过扩散来发生。类似于高电流产生的空隙(电迁移),这种现象称为应力迁移。为了研究合金成分和微观结构对有无Ti底层的Al基互连中扩散的影响,用PECVD SiN $ -x $ /钝化了不同量的Si,Cu和氧的互连,并在150 $ DGR时效空气中放置1000小时。样品也经过电迁移应力分析,以突出可能的相互作用变量。与纯Al相比,Al-Cu产生的空隙更少,电迁移寿命更长。高($ GRT 2%)的Si似乎通过快速的晶界扩散和沉淀物生长来促进空洞形成,但不一定会缩短电迁移寿命。低Si($ LS 1%)似乎有利于延长电迁移寿命并减少空隙总量,但会导致较大的空隙尺寸,从而导致失效。氧污染对应力迁移的影响通常是有害的。 Ti底层是多余的导体,可大大延长电迁移寿命,但会增加单个空隙的大小。原子通量的热依赖性模型与金属膜的热应力滞后测量结合使用,描述了范围广泛的空隙行为。 !23

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号