【24h】

CLOSED FORM SOLUTIONS FOR THE MOTION OF ELECTRICALLY EXCITED MICRO-CANTILEVER BEAMS

机译:电动激发微悬臂梁运动的封闭形式解决方案

获取原文
获取原文并翻译 | 示例

摘要

The differential equation governing the motion of an electrically excited capacitive microcantilever beam is a nonlinear PDE [1]. Accurate analysis about its motion is of great importance in MEMS' dynamical response. In this paper first the nonlinear 4th order 2 point boundary value problem (ODE) governing the static deflection of the system is solved using three methods. 1. The nonlinear part is linearized and its exact solution is obtained. 2. For low applied DC voltages (not near pull-in) the solutin is found using the direct straight forward perturbation analysis. 3. Numerical computer solutions which are used for the previous solution's verifications. The next parts are devoted to the dynamic solution. The nonlinear time variant 4th order PDE governing the dynamic deflection of an electrically excited microbeam is scrutinized. First using the Galerkin Method the mode shapes and the first three mode temporal equations of the linearized equation are found. Considering no damping, using the perturbations method the temporal equations are solved in three states: far from resonance, near 1:1 resonance and near 1:2 resonance. Finally the damped equation is solved using the aforementioned method. In the literature no closed form solution for this problem is presented.
机译:控制电激发电容微悬臂梁运动的微分方程是非线性PDE [1]。关于其运动的准确分析对于MEMS的动态响应非常重要。在本文中,首先使用三种方法解决了控制系统静态挠度的非线性4阶2点边界值问题(ODE)。 1.将非线性部分线性化,并获得其精确解。 2.对于低施加的直流电压(不在吸合附近),可使用直接的直接正向扰动分析找到溶质。 3.用于先前解决方案验证的数字计算机解决方案。接下来的部分专门介绍动态解决方案。详细研究了控制电激发微束动态偏转的非线性时变四阶PDE。首先使用伽勒金方法,找到线性化方程的模态形状和前三个模态时间方程。在不考虑阻尼的情况下,使用摄动法在三个状态下求解时间方程:远离共振,接近1:1共振和接近1:2共振。最后,使用上述方法求解阻尼方程。在文献中没有提出用于该问题的封闭形式的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号