首页> 外文会议>ASME Turbo Expo: Turbomachinery Technical Conference and Exposition >EFFECTS OF AXIAL CASING GROOVES ON THE STRUCTURE OF TURBULENCE IN THE TIP REGION OF AN AXIAL TURBOMACHINE ROTOR
【24h】

EFFECTS OF AXIAL CASING GROOVES ON THE STRUCTURE OF TURBULENCE IN THE TIP REGION OF AN AXIAL TURBOMACHINE ROTOR

机译:轴向壳体槽对轴向涡轮机转子尖端区域湍流结构的影响

获取原文

摘要

Challenges in predicting the turbulence in the tip region of turbomachines include anisotropy, inhomogeneity, and non-equilibrium conditions, resulting in poor correlations between the Reynold stresses and the corresponding mean strain rate components. The geometric complexity introduced by casing grooves exacerbates this problem. Taking advantage of a large database collected in the refractive index-matched liquid facility at JHU, this paper examines the evolution of turbulence in the tip region of an axial turbomachine with and without axial casing grooves, and for two flow rates. The semi-circular axial grooves are skewed by 45° in the positive circumferential direction, similar to that described in Mueller et al. Comparison to results obtained for an untreated endwall includes differences in the distributions of turbulent kinetic energy (TKE), Reynolds stresses, anisotropy tensor, and dominant terms in the TKE production rate. The evolution of TKE at high flow rates for blade sections located downstream of the grooves is also investigated. Common features include: with or without casing grooves, the TKE is high near the tip leakage vortex (TLV) center, and in the shear layer connecting it to the blade suction side tip corner. The turbulence is highly anisotropic and inhomogeneous, with the anisotropy tensor demonstrating shifts from one dimensional (1D) to 2D and to 3D structures over small distances. Furthermore, the correlation between the mean strain rate and Reynolds stress tensor components is poor. With the grooves, the flow structure, hence the distribution of Reynolds stresses, becomes much more complex. Turbulence is also high in the corner vortex that develops at the entrance to the grooves and in the flow jetting out of the grooves into the passage. Consistent with trends of production rates of normal Reynolds stress components, the grooves increase the axial and reduce the radial velocity fluctuations compared to the untreated endwall. These findings introduce new insight that might assist the future development of Reynolds stress models suitable for tip flows.
机译:在涡轮机的尖端区域预测湍流挑战包括各向异性,不均匀性,和非平衡条件,导致雷诺应力和相应的平均应变率分量之间的相关性差。通过套管槽引入的几何复杂性加剧了这个问题。利用在JHU的折射率匹配的液体设施中收集的大型数据库,本文研究了轴向涡轮机的尖端区域的湍流的演变,具有轴向套管槽,以及两个流速。半圆形轴向槽在正圆周方向上偏斜45°,类似于Mueller等人中描述的那样。与未处理的端壁获得的结果的比较包括TKE生产率中湍流动能(TKE),雷诺应力,各向异性张力和主导术语的差异。还研究了位于凹槽下游的叶片部分的高流速的TKE的演变。共同的特征包括:有或没有壳体槽,TKE在尖端泄漏涡流(TLV)中心附近,并且在将其连接到刀片吸入侧尖端角的剪切层中。湍流是高度各向异性的和不均匀的,各向异性张测仪通过一维(1D)至2D和小距离上的3D结构表示偏移。此外,平均应变率和雷诺应力张量部件之间的相关性差。通过凹槽,流动结构,因此雷诺应力的分布变得更复杂。湍流在拐角涡流中也高,在凹槽的入口处和流出凹槽中的进入通道的流动中产生。与普通雷诺应力部件的生产率趋势一致,凹槽增加轴向并减小与未处理的端壁相比的径向速度波动。这些调查结果介绍了新的洞察力,可以帮助未来的雷诺应力模型的发展适合尖端流动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号