首页> 外文会议> >Design trade-off between cogging torque and torque ripple in fractional slot surface-mounted permanent magnet machines
【24h】

Design trade-off between cogging torque and torque ripple in fractional slot surface-mounted permanent magnet machines

机译:分数槽表面安装式永磁电机的齿槽转矩和转矩脉动之间的设计权衡

获取原文

摘要

Summary form only given. In designing the fractional slot surface-mounted permanent magnet (SPM) machines for servo and direct-drive applications, the cogging torque and on-load torque ripple are both major design considerations. Nevertheless, since the torque ripple depends on load conditions, the optimal tooth-tip design for the smallest cogging torque may not be the same for the smallest torque ripple as well. Usually cogging torque will reduce with slot opening width (b) [1] as shown in Fig.1(a). However, the variations of torque ripple are more complicated. With the help of frozen permeability method [2], the on-load torque can be seen as composed by PM torque (T), reluctance torque (T) and on-load cogging torque (T), which all contribute to torque ripple, Fig.1(b). The variation of these components against different b under full-load are shown in Figs.1(c) and (d). It can be seen that the average torque for T will not be zero even in SPM machines due to cross-coupling saturation. With the reducing of b, the leakage flux will increase, which reduces the average torque and makes the fluctuations of T even increase under full-load condition. However, under half-load condition, the variation of torque components against b is totally different, Figs.1(e) and (f). It reveals that the cross-coupling effect under half-load becomes unobvious while T reduces when b is small. Therefore, a trade-off exists in designing the tooth-tips for SPM machines . By way of example, if a SPM machine mainly works under idle (no-load) and low load conditions, the closed slot opening can be adopted since it will result in low open-circuit cogging torque as well as relative low torque ripple under low load conditions . A prototype machine with 12-slot/8-pole has been designed, analyzed and tested according to this application as shown in Figs .2(a) a- d (b) . Since the predicted cogging torque is extremely small, the experimental error may cover the real data . However, the amplitude of measured result still proves the tiny cogging torque . Meanwhile, the measured on-load torque validates the small torque ripples for low load regions .
机译:仅提供摘要表格。在设计用于伺服和直接驱动应用的分数槽表面安装式永磁(SPM)机器时,齿槽转矩和有载转矩脉动都是主要的设计考虑因素。但是,由于转矩脉动取决于负载条件,因此对于最小齿槽转矩而言,最佳齿尖设计对于最小转矩脉动可能也不相同。如图1(a)所示,通常齿槽转矩会随着槽口宽度(b)[1]而减小。但是,转矩脉动的变化更加复杂。借助于冻结渗透率方法[2],可以将有载转矩视为由PM转矩(T),磁阻转矩(T)和有载齿槽转矩(T)组成,它们均会造成转矩波动,图1(b)。这些分量在满载下相对于不同b的变化如图1(c)和(d)所示。可以看出,即使在SPM机器中,由于交叉耦合饱和,T的平均转矩也不会为零。随着b的减小,漏磁通将增加,这会降低平均转矩,并使T的波动在满载条件下甚至增加。然而,在半负载条件下,转矩分量相对于b的变化完全不同,图1(e)和(f)。结果表明,当b较小时,当T减小时,半负载下的交叉耦合效应变得不明显。因此,在设计用于SPM机器的齿尖时需要权衡。举例来说,如果SPM机器主要在空转(空载)和低负载条件下工作,则可以采用封闭的开槽方式,因为这会导致低开路齿槽转矩以及在低速时的相对低转矩脉动负载条件。如图.2(a)a-d(b)所示,已根据该应用设计,分析和测试了具有12槽/ 8极的原型机。由于预测的齿槽转矩非常小,因此实验误差可能会覆盖实际数据。但是,测量结果的幅度仍然证明了微小的齿槽转矩。同时,所测得的负载扭矩验证了低负载区域的较小扭矩波动。

著录项

  • 来源
    《》|2015年|1-1|共1页
  • 会议地点 Beijing(CN)
  • 作者

    Wu D.; Zhu Z.;

  • 作者单位

    Electron. Electr. Eng. Univ. of Sheffield Sheffield UK;

  • 会议组织
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号