首页> 外文会议> >Nature's design of hierarchical superhydrophobic surfaces of a water strider for low adhesion and low energy dissipation
【24h】

Nature's design of hierarchical superhydrophobic surfaces of a water strider for low adhesion and low energy dissipation

机译:大自然设计的阶梯式超疏水表面,以实现低附着力和低能耗

获取原文

摘要

The mechanics of wet adhesion between water striders' legs and water surface were studied.Firstly, we showed that the nano- to microscale hierarchical surface structure on striders' legs iscrucial for a stable water-repellent properties of the legs. The smallest structure is made for thesake of a stable Cassie state even at harsh environment condition, which sets an upper limit ofthe dimension of the smallest structure. And the maximum stress and the maximum deformationof the surface structures at the contact line are size dependent due to the asymmetric surfacetension, which sets a lower limit for the dimension of the smallest structure. The surface hierarchycan largely reduce the adhesion between the water and the legs by stabilizing the Cassie state,increasing the apparent contact angle, and reducing the contact area and the length of contactline. Secondly, the processes of the legs pressing on and detaching from the water surface wereanalyzed with a two dimensional model. We found that the superhydrophobicity of the legs'surface are critically important for reducing the detaching force and detaching energy. Finally, thedynamic process of the legs striking on the water surface mimicking the maneuver of water striderswas analyzed. We found that the large length of the legs can not only reduce the energy dissipationat the quasi-static pressing and pulling processes, but also enhance the efficiency of energy transferfrom the bio-energy to the kinetic energy in the dynamic process during the maneuver of waterstriders. The mechanical principles found in this study may provide useful guidelines for design ofsuperior water-repellent surfaces and novel aquatic robots.
机译:研究了水showed腿与水表面之间的湿粘附机理。首先,我们发现水str腿上的纳米级至微米级分层表面结构对于稳定的水腿特性至关重要。即使在恶劣的环境条件下,也为了保持稳定的卡西状态而制造了最小的结构,这设定了最小结构的尺寸的上限。由于不对称的表面张力,接触线上的表面结构的最大应力和最大变形取决于尺寸,这为最小结构的尺寸设置了下限。通过稳定卡西状态,增加表观接触角并减小接触面积和接触线长度,表面层次可以大大减少水与腿之间的附着力。其次,利用二维模型分析了双腿压在水面上的过程。我们发现腿部表面的超疏水性对于降低分离力和分离能量至关重要。最后,分析了腿部撞击水面的动态过程,模仿了水蹬机的动作。我们发现,较长的支腿不仅可以减少准静态推拉过程中的能量耗散,而且还可以提高注水器操纵过程中动态过程中从生物能到动能的能量转移效率。 。这项研究中发现的机械原理可能为设计优良的防水表面和新型水上机器人提供有用的指导。

著录项

  • 来源
    《》|2013年|1|共1页
  • 会议地点 Beijing(CN)
  • 作者单位

    Department of Engineering Mechanics Tsinghua Universtiy Beijing 100084 China;

    Biomechanics and Biomaterials Laboratory Department of Applied Mechanics Beijing Institute of Technology Beijing 100081 China;

    Department of Civil and Environmental Engineering and Department of Mechanical Engineering Northwestern University Evanston Illinois 60208 USA;

  • 会议组织
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

    superhydrophobic; water strider; low adhesion;

    机译:超疏水水ider低附着力;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号