首页> 外文会议>Conference on Nanosensors, Microsensors, and Biosensors and Systems >NanoDAC - Object Deformation Measurements for Micro and Nanotechnology Applications
【24h】

NanoDAC - Object Deformation Measurements for Micro and Nanotechnology Applications

机译:纳米二段 - 微型和纳米技术应用的物体变形测量

获取原文

摘要

The manufacturing, handling and control of micro and nano scale devices require the quantification of their geometrical and mechanical properties. While the measurement of geometrical and size data is easily accessible by SFM and SEM imaging equipment, mechanical characterization is a general problem for these objects. Different kinds of size effects more often force material property determination directly on micro/nano objects. Therefore, new strategies for material testing have to be developed. Displacements and their derivatives are two basic properties to be measured during testing for many mechanical material properties. The authors make use of SFM and high resolution SEM imaging in order to obtain spatially resolved displacement data over the scan area. Locally applied cross correlation algorithms are utilized to compute displacement fields and the corresponding first order derivatives. Micrographs are captured subsequently for different object load states. The established technique and measurement system (nanoDAC) is reviewed briefly. The authors present different applications of the nanoDAC method establishing the characterization of micro/nano scale material behaviour. Among the application fields are approaches to measure fracture mechanics criteria from crack opening displacement (COD) fields, a method of measuring residual stresses in thin membranes and testing techniques to measure Young's modulus and Poisson's ratios of thin foils and micro wires. The measurement of fracture mechanics bases on linear elastic fracture mechanics. Measured by AFM, COD fields in the very vicinity of crack tips are used to extract fracture toughness values. Stress determination on membranes utilizes the unique capability of focused ion beam (FIB) equipment, which allows concurrent material milling and micrograph capture with high resolution. A Zeiss X-Beam system has been used to mill trenches and holes into membranes of semiconductor structures. Treated that way stress release fields are determined from SEM micrographs. Taking into consideration reasonable stress hypotheses, membrane stresses are calculated from the obtained deformation fields. With the presented methods the basis is provided for an experimental reliability analysis of MEMS/NEMS and nanodevices.
机译:微型和纳米级装置的制造,处理和控制需要定量其几何和机械性能。虽然通过SFM和SEM成像设备易于访问几何和尺寸数据的测量,但机械表征是这些对象的一般问题。不同种类的尺寸效应更常用于Micro / Nano对象直接迫使材料性能测定。因此,必须制定新的材料测试策略。位移及其衍生物是在测试许多机械材料的测试期间测量的两个基本性质。作者利用SFM和高分辨率SEM成像,以便通过扫描区域获得空间解析的位移数据。本地应用的交叉相关算法用于计算位移字段和相应的第一阶导数。随后捕获显微照片以用于不同的对象负载状态。简要审查了建立的技术和测量系统(Nanodac)。作者呈现了纳秒法的不同应用,建立了微/纳米尺度材料行为的表征。在应用领域是测量从裂缝开口位移(COD)场的裂缝力学标准的方法,一种测量薄膜中残留应力的方法和测量杨氏模量和泊舌的薄箔和微导线的比例。裂缝力学基础对线性弹性骨折力学的测量。通过AFM测量,裂缝尖端附近的COD场用于提取断裂韧性值。膜的应力测定利用聚焦离子束(FIB)设备的独特能力,这允许具有高分辨率的并发材料研磨和显微照片。 Zeiss X-梁系统已被用于将沟槽和孔研磨成半导体结构的膜。处理方式,应从SEM显微照片确定应力释放场。考虑合理的应力假设,从所获得的变形领域计算膜应力。利用所提出的方法,提供了MEMS / NEMS和NEMS和NENODETICE的实验可靠性分析的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号