首页> 外文会议>Conference on biofabrication for hierarchical in vitro tissue models >LASER-BASED 3D PRINTING OF HYDROGEL BARRIER MODELS FOR MICROFLUDIC APPLICATIONS
【24h】

LASER-BASED 3D PRINTING OF HYDROGEL BARRIER MODELS FOR MICROFLUDIC APPLICATIONS

机译:基于激光的微流体应用水凝胶屏障模型的3D打印

获取原文

摘要

The placenta secures the survival and development of the fetus. As placental tissue connects the fetus with the mother and is responsible for endogenous and exogenous material transfer. The maternal and fetal blood are thereby separated, by the so-called placental barrier, which is made up by the trophoblastic syncytium and the fetal capillary wall. Research in the field of placenta biology represents a challenging topic, as current approaches are difficult to perform, time consuming and often carry the risk of harming the fetus. The establishment of a reproducible in-vitro model, simulating the placental transport is necessary to study fetal development and for identification of underlying causes of maldevelopment. In this study, a photosensitive hydrogel material, in combination with two-photon polymerisation, was used to produce high resolution structures with nanometre precision geometries. Gelatine modified with methacrylamide and amino-ethyl-methacrylate (GelMOD AEMA) was thereby crosslinked within a customised microfluidic-device under the addition of photoinitiator, separating the chip in two different compartments (Figure 1). The fetal compartment contains HUVEC cells which are cultivated in EGM2, while BeWo B30 cells are supplied with DMEM Ham-F12 to mimic the maternal compartment. This microfluidic approach in combination with native flow profiles can be used to precisely remodel the microenvironment of placental tissue. The establishment of a functional placenta-on-a-chip-model allows the modulation of different clinical and biological scenarios in the future. A potential application can be found in the simulation of altered sugar transport across the placental membrane and evaluation of the effects of altered nutrient balance in-utero.
机译:胎盘确保了胎儿的存活和发展。随着胎盘组织与母亲连接胎儿并负责内源性和外源性物质转移。由此通过所谓的胎盘屏障分离母体和胎儿血液,该胎盘屏障由滋养细胞合胞和胎儿毛细血管壁构成。胎盘生物学领域的研究代表了一个具有挑战性的话题,因为目前的方法难以表现,耗时,往往带来伤害胎儿的风险。建立可重复的体外模型,模拟胎盘运输是研究胎儿发育和识别畸形的潜在原因。在该研究中,使用一种与双光子聚合组合的光敏水凝胶材料用于产生具有纳米精密几何形状的高分辨率结构。由此在加入光引发剂下与甲基丙烯酰胺和氨基乙基 - 甲基丙烯酸氨基 - 甲基丙烯酸氨基 - 甲基丙烯酸氨基 - 甲基丙烯酸酯(GELMOD AEMA)改性明胶,将芯片分离在两个不同的隔室中(图1)。胎儿隔室含有在EGM2中培养的HUVEC细胞,而BEWO B30细胞被DMEM HAM-F12供应以模仿母体隔室。这种微流体方法与天然流动型材组合使用来精确地改造胎盘组织的微环境。建立功能性胎盘型号模型,可以在未来调制不同的临床和生物情景。潜在的应用可以在胎盘膜的改变糖输送模拟中找到,评价子宫内营养平衡的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号