首页> 外文会议>Conference on Innovative Materials For Additive Manufacturing >BEYOND INTUITIVE MICROSTRUCTURES FOR 3D PRINTED COMPOSITES
【24h】

BEYOND INTUITIVE MICROSTRUCTURES FOR 3D PRINTED COMPOSITES

机译:除了直观的3D印刷复合材料的微观结构

获取原文

摘要

3D printed composites marry the worlds of lightweight and tough composite materials with the detailed and programmable geometries of 3D printing. This combination gives rise to a new class of interesting grand challenges to deliver on the net promise of the field. A summary of the current state of 3D printed composites will be provided with a focus on stereolithography (SLA) printing of filled resins that offers high resolution and speed. SLA printing of ceramic filled resins presents many challenges include dispersion issues, poor light penetration, particle alignment, and viscosity handling. Here we offer routes to SLA print resin systems with doped ceramics to exploit magnetic fields to induce programmable alignment within every voxel of a printed 3D part. We offer a vision for implementing numerical simulations of anticipated loads to understand expected internal stress states that inform our design of optimum microstructures within printed composite parts. In addition to optimizing mechanics, we have investigated tuning conduction pathways within 3D printed thermally conductive dielectric parts that have application in the realm of radiofrequency (RF) electronics. Finally, we have found surprising mechanical enhancements through the use of non-intuitive microstructures that can't be simply predicted through finite element analysis of parts under expected loads. These new classes of reinforcing microstructures improve the toughness of printed composites significantly beyond the conventional wisdom for "optimal" microstructure designs.
机译:3D印刷复合材料与轻质和坚韧复合材料的世界与3D打印的详细和可编程几何形状嫁给了一系列轻质和坚韧的复合材料。这种组合引发了一种新的阶级有趣的大挑战,以便提供现场的净承诺。将提供当前3D印刷复合材料状态的概要,其专注于立体镀层(SLA)印刷,其提供高分辨率和速度。 SLA印刷陶瓷填充树脂呈现许多挑战包括分散问题,光渗透差,颗粒对准和粘度处理。在这里,我们提供带有掺杂陶瓷的SLA印花树脂系统的路线,以利用磁场来引起印刷3D部分的每个体素内的可编程对齐。我们提供了实现预期负载的数值模拟的愿景,以了解预期的内应力状态,以通知我们在印刷复合部件内的最佳微观结构设计。除了优化力学之外,我们还研究了在射频(RF)电子领域的3D印刷导热介质部件内的调整传导通路。最后,我们发现通过使用不完全通过在预期负载下的部件的有限元分析来简单地预测的非直观微结构来发现令人惊讶的机械增强。这些新的加强微结构的阶段显着提高了印刷复合材料的韧性,超出了传统智慧,以“最佳”微观结构设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号