首页> 外文会议>ASME Turbine Technical Conference and Exposition >OPTIMIZING A HELICAL GROOVE SEAL WITH GROOVES ON BOTH THE ROTOR AND STATOR SURFACES
【24h】

OPTIMIZING A HELICAL GROOVE SEAL WITH GROOVES ON BOTH THE ROTOR AND STATOR SURFACES

机译:在转子和定子表面上使用凹槽优化螺旋槽密封件

获取原文

摘要

Helical groove seals are non-contacting annular seals commonly used in pumps within the impeller stages to sustain a pressure differential for a given leakage. Helical groove seals have continuously cut grooves, like the threads of a screw, on the surface of the rotor, the surface of the stator, or both. The two main components of the flow within helical groove seals are axial flow and groove flow. The axial flow serves to reduce the leakage by dissipating kinetic energy as the fluid expands in the grooves and then is forced to contract within the jet stream region. The groove flow serves to reduce the leakage by acting as screw pump. The fluid within the grooves is displaced towards the high pressure region as it spins with the rotor. Previous work has shown that seals with grooves on both the surface of the rotor and the surface of the stator can sustain higher pressure differentials for a given leakage than seals with grooves on only one surface. The goal of this study is to optimize the leakage performance of a double surface helical groove seal for a given set of operating conditions. To accomplish this goal, simulations are run in ANSYS CFX. A sufficient mesh with appropriate boundary layers is determined from the mesh independence study. The turbulence model is k-ε turbulence for water at 25°C. This is the first paper to present numerical results for the performance of helical groove seals with grooves on both the rotor and the stator. The design parameters used in the optimization are inner (rotor) groove size, inner helix angle, outer (stator) groove size, and outer helix angle. A Kennard-Stone algorithm, which optimally spaces the simulations within the design space, is used to select the designs to be simulated. A multifactor quadratic regression is derived. Backward regression is used to reduce the performance function to only statistically significant terms. Finally, the optimal seal design is derived from the performance function and is simulated to demonstrate the predictive power of the performance function. Interaction terms for the rotor and stator design parameters will be used to explore the mechanism whereby helical groove seals with grooves on both the rotor and the stator surfaces are able to have lower leakage than helical groove seals with grooves on just one surface. The end result of this study is a seal design which minimizes leakage and therefore improve machine efficiency.
机译:螺旋槽密封件是非接触的环形密封件,通常用于叶轮级内的泵中,以维持给定泄漏的压差。螺旋槽密封件具有连续切割的凹槽,如螺钉的螺纹,在转子的表面上,定子的表面或两者。螺旋槽密封件内的流动的两个主要部件是轴向流动和凹槽流动。轴向流动用于通过在流体在凹槽中膨胀时散发动能来减少泄漏,然后被迫在射流区域内收缩。沟槽流动用作螺杆泵来减少泄漏。当与转子旋转时,凹槽内的流体朝向高压区域移位。以前的工作表明,在转子的表面上的凹槽和定子的表面上具有凹槽的密封可以维持比仅一个表面上的凹槽的密封泄漏的给定泄漏的更高的压差。本研究的目的是优化用于给定的一组操作条件的双表面螺旋槽密封件的泄漏性能。要完成此目标,仿真在ANSYS CFX中运行。从网状独立性研究确定具有适当边界层的足够的网格。湍流模型是在25℃下水的k-ε湍流。这是第一种纸张,用于在转子和定子上具有凹槽的螺旋槽密封件的性能的纸张。优化中使用的设计参数是内(转子)槽尺寸,内螺旋角,外(定子)槽尺寸和外螺旋角度。肯纳德 - 石算法,最佳地空间在设计空间内的模拟,用于选择要模拟的设计。派生多因素二次回归。向后回归用于将性能功能降低到仅统计上很重要。最后,最佳密封设计源自性能功能,并模拟以展示性能功能的预测力。转子和定子设计参数的相互作用条款将用于探索具有在转子和定子表面上的凹槽上的螺旋槽密封的机构能够与螺旋槽密封件具有较低的泄漏,仅在一个表面上具有凹槽。本研究的最终结果是密封设计,可最大限度地减少泄漏,从而提高机器效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号