首页> 外文会议>AusIMM International Uranium Conference >Mineralogical and Microanalytical Characterisation of Uranium Mineralisation
【24h】

Mineralogical and Microanalytical Characterisation of Uranium Mineralisation

机译:铀矿化的矿物学和微分析表征

获取原文

摘要

A sound mineralogical understanding of an orebody or prospect is critical for planning and optimisation of ore processing and waste management, can contribute to improved genetic models and can potentially be used in vector approaches to exploration targeting. This can apply to any ore system but is particularly applicable to uranium-bearing mineralisation. The high mobility of uranium, the often fine-grained nature of U-minerals and the high tendency for absorption onto clays and other minerals can often make for complex ore textures and paragenetic relationships.Drawing on examples from different types of ore system (roll front uranium, iron oxide-copper-gold-(uranium), granite-hosted uranium), this presentation will show how we address these issues using a state-of-the-art range of microanalytical infrastructure at University of Adelaide.The mineralogical deportment of elements of interest (U, other key components such as Th, and also potential unwanted elements), can be evaluated using a combination of scanning electron microscope (SEM), mineral liberation analyser (MLA) and quantitative techniques, including electron probe microanalysis and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The latter offers micron-scale resolution combined with sub-ppm-level sensitivity. Grain-scale chemical mapping permits a visualisation of variation in the concentrations of major, minor and trace elements in the context of prevailing textures.In many uranium ores, textural and compositional heterogeneity are present at a scale smaller than that of the microprobe beam or laser spot. Advances in submicron-scale characterisation and, critically, the ability to microsample in-situ are offered by dual-beam focused ion beam (FIB)-SEM platforms. The FIB-SEM allows for cross-section imaging, 3D 'slice and view' microscopy and information on grain orientation via electron backscatter diffraction. The scanning transmission electron microscopy (STEM) detector on the FIB platform allows for imaging of textures, phase identification by energy-dispersive X-ray spectroscopy (EDXS) and element mapping at a resolution well beIowr that of LA-ICP-MS. Importantly, FIB-SEM can be used to prepare and thin foils for nanoscale imaging and electron diffraction using transmission electron microscopy (TEM). In 2015, these nanoscale capabilities will be significantly expanded by the addition of a new FEI Titan Themis aberration-corrected TEM offering atomic-scale resolution, and the facility to obtain compositional data and chemical maps of 10 x 10 nm areas.When used in combination, this portfolio of quantitative and qualitative techniques bridge nanometre to millimetre scales of observation. They also have application to assessment and interpretation of other mineralogically-complex deposits, including rare earth elements deposits.
机译:对矿体或前景的声音矿物学理解对于矿石加工和废物管理的规划和优化至关重要,可以有助于改进的遗传模型,并且可能在探索靶向探索的探索方法中使用。这可以适用于任何矿石系统,但特别适用于携带铀矿化。铀的高迁移率,U型矿物的常见细粒性和吸收高倾向的粘土和其他矿物质的高趋势通常可以用于复杂的矿石纹理和平原关系。绘制来自不同类型的矿石系统的实例(滚动前部铀,氧化铁 - 铜 - 金 - (铀),花岗岩宿主铀),本演示文稿将展示我们如何使用阿德莱德大学的微型微量分析基础设施来解决这些问题。矿物学驱逐使用扫描电子显微镜(SEM),矿物解析器(MLA)和定量技术的组合,可以评估感兴趣的感兴趣元件(如TH,以及潜在的不需要的元件),包括电子探针微分析和激光消融电感耦合等离子体质谱(La-ICP-MS)。后者提供微米级分辨率,与亚ppm级灵敏度相结合。谷物尺度化学制图允许在普遍纹理的背景下的主要,次要和微量元素浓度的可视化。在许多铀矿石中,纹理和组成异质性以小于微探针梁或激光的量级存在点。亚微米尺度表征的进步,并且统治性地,双光束聚焦离子束(FIB)-SEM平台提供了对原位的微细化的能力。 FIB-SEM允许横截面成像,3D'切片和视图'显微镜和通过电子反向散射衍射进行晶体取向的信息。 FIB平台上的扫描透射电子显微镜(Stew)检测器允许通过能量分散X射线光谱(EDX)和La-ICP-MS的分辨率良好的能量分散X射线光谱(EDX)和元素映射的纹理。重要的是,使用透射电子显微镜(TEM)可用于制备用于纳米级成像和电子衍射的薄箔和薄箔。 2015年,通过添加新的FEI Titan Themis校正TEM提供原子尺度分辨率,这些纳米级功能将大大扩展,以及获得10 x 10 nm区域的组成数据和化学图。组合使用,这种定量和定性技术桥纳米的组合到毫米观测尺度。他们还具有评估和解释其他矿物学 - 复合矿床,包括稀土元素沉积物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号