首页> 外文会议>SPIE Conference on Quantum and Nonlinear Optics >Precision patterning sub-nanometrology relied up a pico-meter quantum sensing approach
【24h】

Precision patterning sub-nanometrology relied up a pico-meter quantum sensing approach

机译:精密图案化子纳米术术依赖于微微米量子传感方法

获取原文

摘要

A precision patterning sub-nanometrology in a single quantum state such as a single electron, a single photon, a single atom, a single molecule, etc. leads an international technology roadmap for semiconductors (ITRS) to quantum noise limits, where quantum effects occur in a sub-nanometer (sub-nm) real space with ultra-fast time and frequency resolutions. Classical metrology technologies face challenges, due to failure to achieve such a transient resolution. In response to the cutting-edge issue, a precision patterning sub-nanometrology relied up a pico-meter quantum sensing approach was developed to satisfy a precision sub-nanometrology need, wherein a conducting atomic force microscopy (C-AFM) coupling a laser micro-photoluminescence (micro-PL) spectroscopy was a state-of-the art height-current-phase uncertainty correlation reproducible traceable precision sub-nanometrology technology with a powerful pico-meter (pm) spatial resolution associated with transient quantized pico-ample differential current-nominal voltage resolutions relied up a quantum electrical measurement triangle principle. A self-assembled vertical nanomedicine photoluminescence crystal array with an atomic interference effect was revealed in Figure 1 and a quantum regenerative amplification principle was discussed. It is concluded that a precision patterning sub-nanometrology relied up a pico-meter quantum sensing approach provides a new impetus for an integrated circuit scaling and paves a way towards developing quantum-level self-alignment patterning technologies to support precision quantum sensing and metrological device innovations and beyond, which are important for quality-profit upgrades and global industry developments.
机译:精密图案化的子纳米测量在单个量子态,例如单电子,单个光子,单个原子,单分子等导致用于半导体(ITRS),以量子噪声的限制,在那里发生的量子效应的国际技术路线图在具有超快速时间和频率分辨率的子纳米(子NM)真实空间中。古典计量技术面临挑战,由于未能实现这种瞬态分辨率。响应于尖端问题,开发了一种精确的图案化子纳米纳米术依赖于微微米量子传感方法以满足精密亚纳米读取方法,其中耦合激光微观的导电原子力显微镜(C-AFM) -Photol发光(Micro-PL)光谱是一种最先进的高度 - 电流不确定相关性可再现可追溯的精密子纳米分号技术,具有与瞬态量化微微差分电流相关联的强大的微微米(PM)空间分辨率-NOMINAL电压分辨率依赖量子电气测量三角原理。在图1中揭示了一种具有原子干扰效果的自组装垂直纳米美发的光致发光晶体阵列,并讨论了量子再生扩增原理。得出结论,精确的图案化子纳米算术依赖于微微仪表量子传感方法为集成电路缩放提供了一种新的推动力,并为推动量子级自对准图案化技术开辟了一种支持精密量子传感和计量装置的方式创新及以后,对质量盈利升级和全球产业发展至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号