首页> 外文会议>SAE AeroTech Congress Exhibition >Self-Adaptive Embedded Network
【24h】

Self-Adaptive Embedded Network

机译:自适应嵌入式网络

获取原文

摘要

In the Integrated Modular Avionics (IMA) domain, THALES developed a high performance communication network named SAEN (Self Adaptive Embedded Network). SAEN is a switchless network solution, fully embedded in a single Network Component Interface (NCI), aimed to interconnect easily several modules of a system, in any mesh network topology. Once each module is equipped with its network component, just connect them together to realize the wanted topology and switch ‘on’ the modules power supplies. At power-on, all the nodes of the network aggregate to form a complete global and coherent network, autonomously managing its configuration and the optimal static routing between any emitter and receiver. The constituted network is deterministic, autonomous, self-discovering, and auto-adapting to the network variations and guarantees an optimal routing in any situation of the graph, as long as a path exists. The interest of managing mesh topology resides in the intrinsic robustness offered by the graph connectivity. This solution is being implemented in the new mission computer embedded in the latest French combat aircraft. For this application, the components drive a 2 Gigabits per second (Gbps) physical layer on a copper backplane. It is to be noticed that for this application, the network is highly constrained since the mission computer is likely to reallocate dynamically the applications on various processing modules. The paper describes the basic elements of graph theory that allow to explain the robustness properties linked to the graph connectivity. Then some linear algebra used to compute the optimal routing and its optimization in a wired logic module of the component. Finally, the paper presents a brief description of the application on the aircraft mission computer.
机译:在集成模块化航空电子设备(IMA)域中,Thales开发出名为Saen(自适应嵌入式网络)的高性能通信网络。 SAEN是一个无效无化的网络解决方案,完全嵌入在一个网络组件接口(NCI)中,旨在在任何网格网络拓扑中容易地互连系统的多个模块。一旦每个模块都配备了其网络组件,只需将它们连接在一起,以实现想要的拓扑和开关“在”模块电源上的“开关”。在上电时,网络聚合的所有节点都形成完整的全局和相干网络,自主管理其配置和任何发射器和接收器之间的最佳静态路由。构成的网络是确定的,自主,自我发现,并自动调整到网络变化,并保证图形的任何情况下的最佳路由,只要存在路径即可。管理网格拓扑的兴趣驻留在图形连接所提供的内在稳健性。该解决方案正在嵌入最新法国战斗机的新任务计算机中实施。对于此应用,组件在铜背板上驱动每秒2千兆位(Gbps)物理层。应注意,对于本申请,网络是高度约束的,因为任务计算机可能会动态地将应用程序重新分配到各种处理模块上。本文描述了图表理论的基本元素,允许解释与图形连接相关的鲁棒性属性。然后,一些用于计算组件的有线逻辑模块中的最佳路由的线性代数及其优化。最后,本文提出了对飞机特派团计算机应用的简要说明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号