首页> 外文会议>Annual World Conference on Carbon >RAMAN MICROSPECTROMETRY STUDY OF CARBONIZATION PROCESSES. FIRST PROMISING APPLICATION IN ARCHEOLOGY
【24h】

RAMAN MICROSPECTROMETRY STUDY OF CARBONIZATION PROCESSES. FIRST PROMISING APPLICATION IN ARCHEOLOGY

机译:拉曼微穴位测定碳化过程的研究。 在考古学中首次有前途的应用

获取原文

摘要

The Raman microspectrometry is more and more recognized to be a major technique for carbon material characterization. Based on the data from the Web of Sciences loaded in mid-April 2012, more than 800 papers were published from 2010 in the Carbon journal concerning the use of Raman microspectroscopy in carbon sciences. This tendency accelerates since 269 papers were devoted to this topic from 2010, and 42 from the beginning of 2012. Raman microspectroscopy is used as a non-destructive technique to obtain rapidly, without special preparation, structural data on carbon materials. For instance, it is a very efficient tool to precisely study the structural changes occurring during the graphitization processes. These processes can be quantitatively followed by important changes in the Raman band shapes, position and intensity. There are different ways to obtain natural or synthetic graphite [1-4], involving the nature of the precursor, the maximum temperature of treatment (in a laboratory furnace or under the terrestrial or extra-terrestrial metamorphisms). However, all these graphitization processes lead to the disappearance of the D band ("defect" band at about 1350 cm~(-1)) whereas the G band (E_2G mode at 1581 cm~(-1)) remains alone in the graphite spectrum [5,1-9]. The I_d/I_g intensity ratio was proposed by Tuinstra and Koenig [5] as a measurement of La the crystallite diameter. This was confirmed by Transmission Electron Microscopy (TEM) images. Graphitization is attributed to an increase of La corresponding to the graphene layer diameter, then to a stricfo sensu crystal growth when tri-periodic order develops [1-3].
机译:拉曼微穴位越来越认识到是碳材料表征的主要技术。基于2012年4月中旬的科学网站的数据,在2010年在碳学报中发布了超过800篇论文,其中有关于在碳科学中使用Raman Micropectectopy的碳杂志。这种趋势自2010年从2011年致力于本主题的课题以来加速了这一趋势,从2012年初开始。拉曼微穴位被用作非破坏性技术,以便快速获得,无需特别准备,碳材料的结构数据。例如,它是一个非常有效的工具,精确地研究了在石墨化过程中发生的结构变化。这些过程可以是定量的,然后是拉曼带形状,位置和强度的重要变化。有不同的方法可以获得自然或合成石墨[1-4],涉及前体的性质,治疗的最高温度(在实验室炉中或陆地或陆地变质下)。然而,所有这些石墨化过程导致D带(“缺陷”带的消失(在约1350cm〜(-1)),而G频带(在1581cm〜(-1)处的e_2g模式)保持在石墨中光谱[5,1-9]。 Tuinstra和Koenig [5]提出了I_D / I_G强度比作为La The微晶直径的测量。这通过透射电子显微镜(TEM)图像来确认。石墨化归因于La的增加对应于石墨烯层直径,然后在三周期顺序开发[1-3]时对斯特丽奇的Sensu晶体生长。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号