首页> 外文会议>CEAS European air and space conference >Aerodynamic - Efficient Configurations Structural Design Challenges Arising - Joined Wings Oblique Wings
【24h】

Aerodynamic - Efficient Configurations Structural Design Challenges Arising - Joined Wings Oblique Wings

机译:空气动力学 - 高效的配置和结构设计挑战 - 加入翅膀柔和翅膀

获取原文

摘要

There is emphasis on fuel-efficient flight. Consideration of efficiency ”top-down” metrics show that we need to increase the Range parameter (Breguet Range Equation). However, for conventional configurations, we are reaching maturing technological stages. Structural technology has been exploited to a high level, using composites. Actively controlled structures may provide additional weight savings. So we need to continue to explore or re-visit more novel and unconventional layouts with challenging structures, materials and weight requirements. Some of these layouts can be achieved using modern analysis and test set-ups. A particular current interest is in design of moderate range aircraft. At moderate ranges, the aircraft fuel efficiency is higher. For example, a 3000nm range is 30-35% more fuel-efficient than a 6000nm range aircraft, Comparing with 9000nm aircraft, the 3000nm aircraft has 40-50% advantage. This has led to a propoal for Air to Air Refuelling for long ranges. The current moderate range aircraft (B737, B757, A300, A320) are of relatively older vintage and there is scope for newer and / or unconventional designs, perhaps incorporating twin-aisles. We consider unconventional concepts exploiting Joined Wing (JW) and Oblique FlyingWing (OFW). The Joined Wings Layout (JW) enables a high aspect ratio (AR) wing to improve L/D. Many configurational possibilities exist. We selected a layout similar to one on which useful experimental forces and moment data is available. Preliminary work on Aerodynamics and performance has confirmed possible benefits (15-20% higher L/D and hence Range Parameter). The JW is subject to non-linear aero-elastics and such aspects are not fully understood. The structural and weight benefits were quantified some time ago and these need to be confirmed with modern techniques. So there are challenges. Detailed understanding of aero-elastcs will allow an idea of the buckling modes on the rear wing. This may require strengthening and weight increases and may eventually entail planform changes. Further work is proposed in several areas e.g. detail configuration design bearing in mind the structural and aero-elastic constraints, the need for passive and active flow control and the incorporation of laminar flow. The Oblique Flying Wing Layout (OFW) has some inherent benefits e.g. Plank wing – Minimal twist – good “2- D suction”, Straight isobars, minimal wave drag (long overall wing). Structural advantages stem from simple box with torsional stiffness, without offset of loads (cf a conventional wing, starboard and port panels). Previous OFW attempts have been either supersonic or subsonic flying wings that can vary sweep in different parts of the flight envelope. These are only suitable for very large aircraft with a passenger cabin buried in the wing. Our interest is in smaller subsonic aircraft and so a separate cylindrical central fuselage is used. In 1976, Lockheed proposed a layout with a pivoting wing. This was capable of Mach 0.95 cruise. Admittedly, the fuel costs were lower and achieving a higher speed was considered more important. We review some features. However, we propose a fixed sweep OFW attached to the top of the fuselage (e,g. BAe146), avoiding pivot weight and complications, and limiting the cruise speed to about Mach 0.85. Preliminary work on Aerodynamics and performance has confirmed possible benefits (10-15% Range Parameter improvement). This in turn will imply weight reductions and efficiency enhancements. The stability and control issues are more complex. To some extent these have been resolved many years ago when NASA Ames undertook flights on the AD-1. Many interesting structural and integration aspects are posed. Amongst these are aspects such as structural divergence control over the forward swept panel. Techniques used on the X-29 by aligning fibres will need to be re-visited. Another aspect is the integration of propulsion structure, ei
机译:有强调省油飞行。考虑到效率“自上而下”的指标表明,我们需要增加Range参数(宝玑距离方程)。然而,对于常规的配置,我们都达到了成熟的技术阶段。结构技术已经开发到高层次,复合材料的使用。主动控制的结构可以提供额外的重量节省。因此,我们需要不断探索和重访更新颖的和非传统的布局与挑战的结构,材料和重量的要求。一些布局可以利用现代分析测试调校来实现。一个特别的目前的兴趣是在适度范围内的飞机设计。在适度范围内,飞机燃油效率更高。例如,3000nm的范围是30%-35%更省油比6000nm范围飞机,具有9000nm飞机相比,3000nm飞行器具有40-50%的优势。这已经导致了空气propoal到空中加油长期范围。当前适度范围飞机(B737,B757,A300,A320)相对较旧的年份的并且存在范围为较新的和/或非常规的设计,也许掺入双过道。我们认为,非传统的概念利用永加盟(JW)和斜FlyingWing(OFW)。接合翼布局(JW)使高纵横比(AR)翼,以改善L / d。存在许多构的可能性。我们选择类似于一个上有用的实验力和力矩数据是可用的布局。上空气动力学准备工作和性能已经确认可能的益处(较高的15-20%的L / d,因此范围参数)。的JW是受非线性航空弹性和这样的方面不充分的理解。结构和重量的好处,前一段时间进行了量化而这些都需要以现代手法加以确认。因此,也有挑战。详细地理解航空elastcs将允许在后翼屈曲模式的想法。这可能需要加强和重量增加,并可能最终继承权的平面形状的变化。进一步的工作,在一些领域如建议记详细的结构设计轴承的结构和气动弹性约束,需要被动和主动流动控制和层流的掺入。斜高飞翼布局(OFW)具有比方说,有些固有的优势木板翼 - 最小扭曲 - 好“2- d抽吸”,直等压线,最小波阻力(长整体翼)。结构上的优点从与扭转刚度简单框干,无偏移负载(CF常规翼,右舷和端口板)。上一页OFW的尝试已经或者超音速或亚音速飞行的翅膀,可以改变在飞行包线的不同部分的扫描。这些只适用于非常大的飞机埋在机翼客舱。我们的兴趣是在较小的亚音速飞机等独立的圆筒形机身中部被使用。 1976年,洛克希德公司提出了一个旋转翼的布局。这是可以0.95马赫巡航。不可否认的是,燃料成本较低,并实现更高的速度被认为是更重要的。我们回顾一些功能。然而,我们建议附接到所述机身(E,G。BAe146)的顶部的固定扫描OFW,避免枢轴的重量和并发症,和限制所述巡航速度至约0.85马赫。空气动力学的初步工作和性能已经确认可能的好处(10%-15%范围参数的改善)。反过来,这将意味着减轻重量和效率增强功能。稳定性和控制问题更加复杂。在一定程度上这些当NASA Ames研究中心承担了对AD-1航班已经很多年以前解决。许多有趣的结构和一体化方面提出。在这些是如过前掠面板结构发散控制方面。通过使纤维在X-29使用的技术将需要重新访问。另一个方面是推进一体化结构,EI

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号