首页> 外文会议>ASME International Mechanical Engineering Congress and Exposition >MICROFLUIDIC MEMS DEVICE IN THE CULTIVATION OF MICROALGAE WITH POSITIVE DIELECTROPHORETIC CELL TRAPPING FOR MEDIA EXCHANGE
【24h】

MICROFLUIDIC MEMS DEVICE IN THE CULTIVATION OF MICROALGAE WITH POSITIVE DIELECTROPHORETIC CELL TRAPPING FOR MEDIA EXCHANGE

机译:微流体MEMS装置在微藻培养中培养介质交换

获取原文

摘要

Through COMSOL modeling and electrode design, positive dielectrophoretic (pDEP) cell trapping for media exchange has been demonstrated on live Chlamydomnas reinhardtii in regular growth medium in a PDMS-glass microfluidic MEMS device. Dielectrophoresis (DEP) is the force applied to dielectric particles in an alternating current (AC) non-uniform electric field. A DEP force toward the increasing electric field gradient is called positive (pDEP). There are several published DEP structures for various applications such as: simple interdigitated structures for particle sorting in flow, DEP tweezers for single cell manipulation, and spiral structures for general cell manipulation. pDEP trapping over large areas (area pDEP) has been demonstrated with the use of low conductivity suspending media, but for higher conductivity suspending media, such as growth media, the pDEP force is reduced, and less likely to trap and hold microalgae against the hydrodynamic forces during media exchange. Multiphysics software, COMSOL, was used to model repeating structures suited for trapping of cells over the bottom area of a microfluidic device, which is useful and necessary for media exchange of a cell culture in a simple microfluidic device. The theoretical model of dielectrophoretic (DEP) force on a homogenous sphere in a homogenous medium in an electric field is a function of the sphere radius and conductivity, medium permittivity, and the gradient of the electric field. By assuming the conductivities, permittivities, and the particle geometry remains constant, the gradient of the electric field is the determining factor for the strength of the pDEP force. Modeling the electric fields and the resulting electric field gradient of various interdigitated electrode configurations allowed for the optimization of an electrode structure's area of higher electric field gradients. The completed microfluidic device consisted of a single channel and a wide growth chamber overlaid over patterned gold-chrome electrodes. The MEMS device was fabricated using soft lithography and photolithography on the etched chrome-gold glass slides. The pDEP trapping was successful in trapping C. reinhardtii for media exchange. Media exchange allows for nutrient replenishment and waste removal, allowing for control of the growth conditions.
机译:通过COMSOL建模和电极设计,已经在PDMS - 玻璃微流体MEMS装置中的常规生长培养基中的活性衣原体雷皮特蒂上证明了媒体交换的正介电电泳(PDEP)细胞诱捕。介电电泳(DEP)是在交流(AC)非均匀电场中施加到介电颗粒的力。朝向增加电场梯度的DEP力被称为阳性(PDEP)。各种应用有几种公布的DEP结构,例如:用于流动的简单的颗粒分选,用于单细胞操纵的颗粒分选,以及用于单细胞操作的螺旋结构,以及通用细胞操纵。通过使用低电导率悬浮介质证明了在大区域(区域PDEP)上的PDEP捕获,但对于较高的电导率悬浮介质,例如生长介质,PDEP力减少,并且不太可能捕获和将微藻捕获和捕获流体动力学媒体交换期间的力量。 Multiphysics软件COMSOL用于模拟适用于微流体装置的底部区域捕获细胞的重复结构,这对于介质在简单的微流体装置中是一种有用的培养细胞培养物的必需结构。的介电电泳(DEP)力上在电场的均匀介质中的均匀球形的理论模型是球体半径和电导率,介质介电常数和电场的梯度的函数。通过假设导电性,允许性和颗粒几何形状保持恒定,电场的梯度是PDEP力强度的确定因子。建模电场和所得到的各种互指电极配置的电场梯度允许优化高电场梯度的电极结构面积的优化。完成的微流体装置包括单个通道和宽的生长室,覆盖在图案化的金铬电极上。使用柔软的光刻和光刻法在蚀刻的铬 - 金玻璃载玻片上制造MEMS装置。 PDEP诱捕成功捕获C. ReinhardTii进行媒体交换。媒体交换允许营养补充和废物去除,从而控制生长条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号