首页> 外文会议>AIAA/ASCE/AHS/ASC structures, structural dynamics and materials conference >Aerostructural Design Optimization of an Adaptive Morphing Trailing Edge Wing
【24h】

Aerostructural Design Optimization of an Adaptive Morphing Trailing Edge Wing

机译:适应变形后翼翼的空气结构设计优化

获取原文

摘要

Adaptive morphing trailing edge technology offers the potential to decrease the fuel burn of transonic transport aircraft by allowing wings to dynamically adjust to changing flight conditions. Current aircraft use flap and aileron droop to adjust the wing during flight. However, this approach offers only a limited number of degrees of freedom, and the gaps in the wing created when using these devices introduce unnecessary drag. Morphing trailing edge technology offers more degrees of freedom, with a seamless interface between the wing and control surfaces. In this paper we seek to quantify the extent to which this technology can improve the fuel burn of transonic commercial transport sized aircraft. Starting from the undefonned Common Research Model (uCRM) geometry, we perform fixed-planform aerostructural optimizations of a standard wing, a wing retrofitted with a morphing trailing edge, and a clean sheet wing designed with the morphing trailing edge. The wing retrofitted with the morphing trailing edge improved the fuel burn as effectively as the full wing redesign without morphing. Additional fuel burn reductions were observed for the clean sheet design. The morphing trailing edge decreased the fuel burn by performing load alleviation at the maneuver condition, weakening the trade-off between cruise performance and maneuver structural constraints, resulting in lighter wingboxes and more aerodynamically efficient cruise configurations.
机译:自适应变形后缘技术通过允许翅膀动态地调整到不断变化的飞行条件,提供减少跨音运输飞机的燃料燃烧的可能性。目前的飞机使用翼片和Aileron Droop在飞行期间调整机翼。但是,这种方法仅提供有限数量的自由度,并且使用这些设备时创建的机翼中的空隙引入了不必要的拖动。变形后缘技术提供更多的自由度,翼和控制表面之间的无缝界面。在本文中,我们寻求量化这项技术可以提高跨安商业运输尺寸飞机的燃料烧伤的程度。从undefonned常见的常见研究模型(Ucrm)几何中,我们执行标准翼的固定平面变速型的空气结构优化,具有变形后缘的机翼,以及用变形后缘设计的干净的薄机翼。随着整个翼重新设计而没有变形,有变形后缘的机翼改善了燃料燃烧的燃料燃烧。对于清洁板设计,观察到额外的燃料燃烧减少。通过在机动条件下进行负荷缓解,变形后缘减少了燃料燃烧,削弱了巡航性能和机动结构约束之间的权衡,导致较轻的翼形箱和更空气动力学高效的巡航配置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号