首页> 外文会议>Water Environment Federation annual technical exhibition and conference >Bioaugmentation with a proprietary facultative bioculture in a two-phase anaerobic digestion process of cobia fish wastes from indoor aquaculture system
【24h】

Bioaugmentation with a proprietary facultative bioculture in a two-phase anaerobic digestion process of cobia fish wastes from indoor aquaculture system

机译:来自室内水产养殖系统的两相厌氧消化过程中具有专有兼脓毒疗法的生物纯化

获取原文

摘要

For this study, we investigated a BioAugmentation Process (bioagumentation) system for the degradation of indoor aquaculture fish wastes using a specially designed acid producing bioculture in the facultative (FAC) phase of a two-phase anaerobic digestion reactor at mesophilic temperature (40°C ±2°C). This bioagumentation-FAC system was expected to increase the rate of the anaerobic digestion through addition of the proprietary FAC bioculture containing microorganisms that are responsible for one or more rate limiting steps in the digestion process. Additionally, the bioagumentation-FAC was also expected to elevate the end point of digestion by suppressing undesirable metabolic pathways. With undesirable byproducts (e.g. hydrogen sulfide) being largely avoided at the FAC phase and more acid-producing microorganisms present, more fatty acids would be produced and available for methane producing organisms, thereby increasing the rate of methane production. In this study we demonstrated improved performance of a bioagumentation-FAC compared to non bioagumentation-FAC anaerobic digestion system used to treat an aquaculture waste from the bottom of fish tanks, which primarily consists of fish feces, excess fish food and other excretory wastes. Fishwaste exhibited high digestibility. In a semi-batch test for 50 days, 95% of theoretical methane production was produced as total biomethane potential for the bioagumentation-FAC reactor. The bioagumentation-FAC anaerobic system produced 21% to 36% more total methane (ml/g VSadded) in the semi-continuous experiment. bioagumentation hydrogen sulfide concentrations were 13% to 22% lower. Finally, applying plastic media in our bioreactors has increased methane production by 83% and 48% for 8 days and 16 days HRT, respectively.
机译:对于这项研究,我们研究了一种生物沉积过程(生物可见)系统,用于使用培养温度(40°C)的两相厌氧消化反应器的兼层阶段的特殊设计的酸生产生物养殖的室内水产养殖鱼类废物的生物养殖过程±2°C)。该生物结变对FAC系统预计通过添加含有含有微​​生物的专有FAC Biocultupe来增加厌氧消化的速率,所述微生物负责消化过程中的一种或多种速率限制步骤。另外,还期望通过抑制不希望的代谢途径来提高消化的终点。由于不希望的副产物(例如硫化氢)在很大程度上避免在面部相,并且产生更多的酸性微生物,因此可以生产更多的脂肪酸,可用于甲烷生产生物,从而增加甲烷产生的速率。在这项研究中,与用于治疗鱼缸底部的水产养殖废物的非生物可见 - FACAaerobic消化系统相比,我们证明了生物结论的改善性能,这些消解系统主要包括鱼粪,过量的鱼类食品和其他排泄物的水产养殖废物。 Fishwaste表现出高的消化率。在半批量试验中50天,95%的理论甲烷产量为生物收缩 - FAC反应器的总生物甲烷电位产生。在半连续实验中,生物结厌氧系统在半连续实验中产生了21%至36%的总甲烷(ml / g vsadded)。生物结复硫化氢浓度降低至22%。最后,在我们的生物反应器中施加塑料介质,甲烷产量增加了83%和48%,分别为8天和16天HRT。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号