首页> 外文会议>International Conference on Fracture >A New Computational Framework for Fatigue Crack Growth Analysis of Components
【24h】

A New Computational Framework for Fatigue Crack Growth Analysis of Components

机译:组件疲劳裂纹增长分析的新计算框架

获取原文

摘要

Two contrasting methods are traditionally available to analyze fatigue crack growth (FCG) lifetime in components. On the one hand, engineering software such as NASGRO and AFGROW provides pre-programmed stress intensity factor (SIF) solutions for simplified crack and component geometries, sophisticated crack growth equations including load interaction models, and relatively fast execution times-often only a few seconds. However, the SIF solutions in these codes are often for simple uniform or linear stress distributions, and the user is left with the task of interpreting how best to transfer dimensions and stresses manually from component models into the simplified fracture models. On the other hand, numerical fracture software such as FRANC or BEASY offers integrated modeling of the crack in the component, calculating the SIF more accurately with finite element (FE) or boundary element (BE) methods based on the actual three-dimensional (3D) crack and component geometries and stresses, and updating the mesh as the crack grows. However, these codes generally offer a limited menu of crack growth models for complex variable amplitude loading, and their execution times for large load spectra can be extremely long in some cases-perhaps several hours. Neither of these classes of FCG analysis methods is typically integrated directly with reliability assessment to determine the probability of fracture. Some external linkage with an independent computer program is usually required to perform this calculation, and this introduces further inefficiencies into the analysis process. In this paper, a new framework for FCG analysis of components is described that offers a unique balance of accuracy and efficiency, fully integrated with reliability assessment. New weight function (WF) SIF solutions with high accuracy and efficiency accommodate complex stress gradients throughout the crack plane. A sophisticated graphical user interface (GUI) provides a direct interface with 2D or 3D FE models to extract and visualize geometry and stress information. The GUI can also build an optimum fracture mechanics model automatically with little user intervention. Advanced FCG algorithms are integrated directly with probabilistic algorithms to calculate reliability. Ultimately, this framework will facilitate automated reliability calculations addressing all potential crack locations in the component.
机译:传统上可用于分析组分中疲劳裂纹生长(FCG)寿命的两个对比度。一方面,诸如Nasgro和Afgrow的工程软件提供预编程的应力强度因子(SIF)解决方案,用于简化的裂缝和部件几何形状,复杂的裂缝增长方程,包括负载交互模型,以及相对较快的执行时间 - 通常只有几秒钟。然而,这些代码中的SIF解决方案通常用于简单的均匀或线性应力分布,并且用户留下了从组件模型手动转移到简化的骨折模型中的最佳转移尺寸和应力的任务。另一方面,法式或Beasy等数值骨折软件提供了组件中的裂缝的集成建模,使用有限元(FE)或基于实际三维(3D)更准确地计算SIF(FE)或边界元素(3D) )裂缝和部件几何和应力,并随着裂缝的增长而更新网状物。然而,这些代码通常提供有限的裂纹增长模型菜单,用于复杂可变幅度负载,并且它们的大负载光谱的执行时间在某些情况下可能非常长 - 或许几个小时。这些类别的FCG分析方法都不是直接与可靠性评估集成的,以确定骨折的可能性。通常需要具有独立计算机程序的一些外部联动来执行该计算,并且这引入了分析过程中进一步低效率。在本文中,描述了一个新的组件分析的新框架,提供了独特的准确性和效率平衡,完全与可靠性评估集成。具有高精度和效率的新重量函数(WF)SIF解决方案可容纳整个裂缝平面的复杂应力梯度。复杂的图形用户界面(GUI)提供具有2D或3D FE模型的直接接口,以提取和可视化几何和应力信息。 GUI还可以自动构建最佳的骨折力学模型,具有很少的用户干预。高级FCG算法直接与概率算法集成,以计算可靠性。最终,该框架将促进自动可靠性计算,解决组件中的所有潜在裂缝位置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号