首页> 外文会议>International Symposium on Combustion >TEMPERATURE DEPENDENCE OF NO TO NO_2 CONVERSION RY n-RUTANE AND n-PENTANE OXIDATION
【24h】

TEMPERATURE DEPENDENCE OF NO TO NO_2 CONVERSION RY n-RUTANE AND n-PENTANE OXIDATION

机译:NO的温度依赖性NO_2转化ry n-rutane和正戊烷氧化

获取原文

摘要

An experimental and detailed chemical kinetic modeling investigation of the temperature-dependent role of n-butane and n-pentane oxidation on the NO to NO_2 conversion is presented. An atmospheric pressure, quartz flow reactor was used to examine the NO oxidation to NO_2 behavior for the 600 to 1100 K temperature range and residence times from 0.16 to 1.46 s. In the experiment, probe measurement of the species concentrations was performed in the flow reactor using a mixture of NO (20 ppm)/air/ hydrocarbon (10 ppm). In the chemical kinetic calculation, the time evolution of NO, NO_2, hydrocarbons, and reaction intermediates were evaluated using a n-butane oxidation model coupled with a nitrogen oxides submechanism for all temperatures. The detailed chemical kinetic model consisted of 897 reactions and 158 species. The experimental results show n-pentane promoting the NO to NO_2 conversion to a greater extent than n-butane for the entire temperature range. This may be explained by n-pentane oxidation exhibiting a vigorous chain-branched hydroperoxy-pentylperoxy radical isomerization kinetic system more so than found in n-butane. Kinetic calculations performed on the n-butane oxidation system revealed that the NO to NO_2 conversion is strongly temperature dependent. The NO + HO_2 = NO_2 + OH and alkylperoxy + NO = alkyloxy + NO_2 reactions play an important role in converting NO to NO_2 at the lower temperatures in this study. However, as the temperature increases toward 800-900K, the butyl + O_2 and hydroperoxy-butyl + O_2 network of reactions undergoes reaction reversal and allows other reaction channels to be accessed which heavily promotes NO to NO_2 conversion. Above 900 K, the decrease in NO_2 concentration is attributed to NO_2 + HO_2 = HONO + O_2, HONO( + M) = NO + OH( + M), and NO_2 + O = NO + O_2 destruction reactions. Consequently, the change of HO_2 formation with temperature plays the most important role for the temperature dependence of the NO to NO_2 conversion.
机译:介绍了正丁烷和正戊烷氧化对NO至NO_2转化的温度依赖性作用的实验和详细的化学动力学建模研究。使用大气压,石英流动反应器用于检查600至1100k温度范围的NO_2行为的氧化,从0.16到1.46秒的停留时间。在实验中,使用NO(20ppm)/空气/空气/烃(10ppm)的混合物在流动反应器中进行物种浓度的探针测量。在化学动力学计算中,使用与氮氧化物机制的正丁烷氧化模型进行所有温度,评估NO,NO_2,烃类和反应中间体的时间演化。详细的化学动力学模型由897个反应和158种。实验结果表明,正戊烷在整个温度范围内的正丁烷的较大程度上促进NO_2转化。这可以通过N-戊烷氧化表现出剧烈的链条支链的氢溴酸戊基 - 戊基根被氧化动力学体系,而不是在正丁烷中发现。在正丁烷氧化系统上进行的动力学计算显示,NO_2转化率强烈依赖性。 NO + HO_2 = NO_2 + OH和烷基苯氧基+ NO =烷基氧基+ NO_2反应在本研究中的较低温度下转化为NO_2时起着重要作用。然而,随着温度升高到800-900K,丁基+ O_2和氢过氧基 - 丁基+ O_2反应网络经历反应逆转,并允许进入其他反应通道,其严重促进NO_2转化率。在900 k以上,NO_2浓度的降低归因于NO_2 + HO_2 = HONO + O_2,HONO(+ M)= NO + OH(+ M),NO_2 + O = NO + O_2销毁反应。因此,HO_2的变化与温度的变化起到NO对NO_2转换的温度依赖性的最重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号