首页> 外文会议>International North Sea Flow Measurement Workshop >PRESSURE AND TEMPERATURE EFFECTS FOR ORMEN LANGE ULTRASONIC GAS FLOW METERS
【24h】

PRESSURE AND TEMPERATURE EFFECTS FOR ORMEN LANGE ULTRASONIC GAS FLOW METERS

机译:Ormen Lange超声波气流表的压力和温度效应

获取原文

摘要

Ultrasonic gas flow meters (USMs) may be influenced by pressure and temperature in several ways. Change of the meter body's cross-sectional area (the "pipe bore") influences directly on the amount of gas flowing through the meter. Change of the ultrasonic path geometry (i.e. change of the inclination angles and lateral chord positions, caused by e.g. meter body diameter change and change of the orientation of the ultrasonic transducer ports) influences on the transit times and the numerical integration method of the meter. Change of the Reynolds number influences on the integration method. Change of the length of the ultrasonic transducer ports influences on the acoustic path lengths, and thus on the transit times. Likewise, change of the length of the ultrasonic transducers influences on the acoustic path lengths, and thus on the transit times. In addition, changes of the transducer properties such as the directivity, influences on the diffraction correction, and thus on the transit times. Some of these issues are addressed to some extent in current draft standards for such meters, such as the AGA-9 (1998) report, and the ISO/CD 17089-1 (August 2007). Other of these effects have not been described or treated in the literature. In the present paper, pressure and temperature effects have been investigated for 18" Elster-Instromet Q-Sonic 5 ultrasonic flow meters (USMs) to be operated in the Ormen Lange fiscal metering system at Nyhamna in Mere and Romsdal, Norway, from October 2007. Pressure and temperature changes from flow calibration (Westerbork, at 63 barg and 7 °C) to field operation (Ormen Lange, nominally at 230 barg and 40 °C) conditions are evaluated. The effects addressed are changes related to (a) the meter's cross-sectional area, (b) the ultrasonic path geometry (inclination angles and lateral chord positions), (c) length expansion of the ultrasonic transducer ports, (d) length expansion/compression of the ultrasonic transducers, and (e) Reynolds number correction. The various effects (a)-(e) contributing to the measurement error are discussed and quantified. Investigations are made using a combination of analytical modeling and finite element numerical modeling of the meter body and the ultrasonic transducers, combined with a model for USM numerical integration relevant for the Q-Sonic 5 multipath ultrasonic flow meter in question. It is shown that for the Ormen Lange application, investigation and evaluation of all of the factors (a)-(e) mentioned above have been necessary to evaluate the effect of pressure and temperature on the meter. Expressions for pressure and temperature effects on ultrasonic flow meters proposed in ISO/CD 17089-1 do not appear to be preferred for the Ormen Lange fiscal metering system. The study shows that pressure and temperature affects the Q-Sonic 5 by about 0.26 % in the Ormen Lange application. If this systematic measurement error is not corrected for, the Q-Sonic 5 will underestimate the volumetric flow rate by the same amount. Significant economic values are involved. Two correction factors are thus proposed for the Q-Sonic 5 in this application: (1) one "nominal P&T correction factor" (accounting for by far the largest part of the correction, about 0.26 %), and (2) an "instantaneous P&T correction factor" (accounting for small deviations in pressure and temperature from nominal to actual Ormen Lange conditions), which is typically an order of magnitude smaller than the nominal P&T correction factor. The correction factors and the individual contributors to these are discussed and quantified.
机译:超声波气体流量计(USMS)可能有多种方式受到压力和温度的影响。仪表身体的横截面积(“管孔”)的变化直接影响流过仪表的气体量。超声路径几何形状的改变(即倾斜角度和横向弦位置的变化,由例如仪表体直径变化和超声换能器端口的取向的变化)对仪表的运输时间和数值积分方法的影响。雷诺数对集成方法的影响。超声换能器端口长度的变化对声路长度的影响,从而对途径。同样地,超声换能器的长度的变化对声学路径长度影响,因此在运输时间上影响。此外,诸如方向性的换能器性质的变化,对衍射校正的影响,因此在横跨速度上。其中一些问题在某种程度上涉及当前米的目前的标准,例如AGA-9(1998)报告和ISO / CD 17089-1(2007年8月)。这些效果中的其他效果尚未描述或治疗文献中。在本文中,已经研究了18“Elster-Instromet Q-Sonal 5超声波流量计(USM)在Mere and Romsdal,2007年10月的纽约州纽约市纽约州的纽约州兰姆纳(Emen Lange财政计量系统)进行了压力和温度效应。评估从流动校准(Westerbork,63 Barg和7°C)的压力和温度变化(在63栏和7°C)的情况下,评估了条件的野外操作(名义上是名义上的,名义为230℃)条件。解决的效果与(a)相关的变化仪表的横截面积,(b)超声波路径几何形状(倾斜角和横向弦位置),(c)超声换能器端口的长度膨胀,(d)超声换能器的长度膨胀/压缩,(e)reynolds讨论和量化对测量误差的各种效果(a) - (e)。使用仪表体和超声波的分析建模和有限元数值模拟进行研究换能器,结合Q-Sonic 5多径超声波流量计的USM数值集成模型。结果表明,对于Ormen Lange应用,已经需要对上述所有因素(A) - (e)的调查和评估来评估压力和温度对仪表的影响。对于OSO / CD 17089-1中提出的超声波流量计的压力和温度效应的表达似乎是Omen Lange财政计量系统的优选优选。该研究表明,在Ormen Lange应用中,压力和温度会影响Q-Sonic 5约0.26%。如果未校正该系统测量误差,则Q-Sonic 5将低估相同量的体积流量。涉及显着的经济价值。因此提出了两个校正因子,在本申请中为Q-Sonic 5提出:(1)(1)一个“标称p&T校正因子”(概要核对校正的最大部分,约0.26%),以及(2)“瞬时” P&T校正因子“(占压力和温度的小偏差,从标称到实际的或门缘条件),其通常是比标称P&T校正因子小的数量级。讨论和量化纠正因子和各个贡献者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号