首页> 外文会议>International ERCOFTAC Workshop on Direct and Large-Eddy Simulation >Large-Eddy Simulations of a Turbulent Magnetohydrodynamic Channel Flow
【24h】

Large-Eddy Simulations of a Turbulent Magnetohydrodynamic Channel Flow

机译:湍流磁力流体动力通道流动的大涡模拟

获取原文

摘要

We consider the channel flow of an electrically conducting fluid subjected to a magnetic field. In this framework, numerical predictions are particularly appealing because liquid metals are difficult to study experimentally. In many industrial processes, the magnetic Reynolds number is low. Hence, the applied magnetic field is not perturbed by the flow (quasi-static approximation) and provides an additional force term in the equations of motion. Moreover, the Lorentz force acting on the flow has globally dissipative and anisotropic effects [1, 2]. In the case of low-intensity wall-normal magnetic fields, the turbulent fluctuations tend to be suppressed at the center of the channel (flattening effect) and confined in the near-wall region, where thin layers of high shear (the Hartmann layers) appear [3]. Direct Numerical Simulations (DNS) of magnetohydrodynamic (MHD) flows require accurate numerical discretizations and are thus limited to moderate Reynolds number flows and simple geometries. In Large-Eddy Simulations (LES), the dynamics of the unresolved scales is taken into account through a subgrid-scale model. The applicability of hydrodynamic models to MHD homogeneous turbulence has been proven successful [4]. Our aim is to evaluate the performances of under-resolved DNS of a MHD channel flow (with and without subgrid model). Finite volume (FV) and spectral (PS) results are compared in terms of first and second order statistics. A particular attention is also given to the contribution of the model to the kinetic energy budget.
机译:我们考虑经受磁场的导电流体的通道流。在该框架中,数值预测特别吸引,因为液体金属很难通过实验研究。在许多工业过程中,磁雷诺数低。因此,所施加的磁场不受流动(准静态近似)的扰动,并且在运动方程中提供额外的力术语。此外,作用于流动的洛伦兹力具有全局耗散和各向异性效应[1,2]。在低强度壁正常磁场的情况下,湍流波动倾向于在通道(扁平效果)的中心处抑制在近壁区域中,其中高剪切的薄层(Hartmann层)出现[3]。磁力流体动力学(MHD)流的直接数值模拟(DNS)需要准确的数值离散化,因此限于中度雷诺数流和简单的几何形状。在大涡模拟(LES)中,通过子级级模型考虑了未解决的尺度的动态。流体动力模型对MHD均匀湍流的适用性已被证明是成功的[4]。我们的目的是评估MHD通道流的下解析DNS的性能(有和没有细分模型)。在第一和二阶统计方面比较有限体积(FV)和光谱(PS)结果。还特别注意了模型对动力能预算的贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号