首页> 外文会议>Society of Petrophysicists and Well Log Analysts, Inc.;SPWLA Annual Logging Symposium >DIGITAL SAMPLING: MULTIVARIATE PATTERN RECOGNITION,MACHINE LEARNING, AND EQUATION OF STATE. A REAL-TIME APPROACH TO EVALUATE CLEAN FORMATION-FLUID PROPERTIES AND MUD-FILTRATE CONTAMINATION
【24h】

DIGITAL SAMPLING: MULTIVARIATE PATTERN RECOGNITION,MACHINE LEARNING, AND EQUATION OF STATE. A REAL-TIME APPROACH TO EVALUATE CLEAN FORMATION-FLUID PROPERTIES AND MUD-FILTRATE CONTAMINATION

机译:数字采样:多变量模式识别,机器学习和状态方程。评估清洁地层流体性质和泥滤液污染的实时方法

获取原文

摘要

Acquiring physical samples from an open hole is usuallya one-opportunity event where a formation tester is sentdownhole with a limited number of sample chambers,either on a logging-while-drilling (LWD) or wirelineconveyance system. The samples are acquired, retrieved,and sent to a laboratory for analysis, which takes placeweeks to months later. By the time the laboratory hasperformed an analysis, the section has been cemented,and perhaps the rig has finished operations and movedonto the next phase. Success of the sampling operation ispredicated on the samples being acquired from the rightlocations (where to sample?), at the right time tominimize drilling fluid-filtrate contamination (when tosample?), and in a manner that preserves the integrity ofthe sample and is representative of the formation fluid(how to sample?). Digital sampling is a technique thatthat can be used to both optimize the when, where, andhow of physical samples taken and further augment theinformation collected with sensor analysis fromlocations that are not physically sampled.This work shows a new workflow that can be used toextrapolate clean fluid properties with moderately highcontaminationlevels in a rapid pumpout. Based on theextrapolated clean fluid properties, an operator canmake a decision whether to continue the pumpout toobtain physical samples or abort the pumpout if the fluidproperties extrapolated (digital sampling) at the locationare sufficient for the operation decision making. Theworkflow starts with applying principal componentanalysis (PCA) to a multichannel sensor measurement offluid pumped out of the formation during a formation testsampling operation. Because the fluid pumped outcontains only two endmembers (clean formation fluidand mud filtrate), the PCA scores of sensormeasurements form a line in the PCA space, and solutionbands of endmembers can be estimated based onphysical constraint of sensor measurements (nonnegative etc.). Then, a trend-fitting method is used topredict the asymptote of the first principal componentscore. The asymptote value can be inverted to sensorsignal using PCA inversion, and the sensor signalrepresents the clean formation-fluid measurement.Lastly, machine-learning-based composition models canbe used to predict the clean fluid compositions based onthe sensor signal. The composition data then is used topredict fluid physical properties, such as bubblepoint,viscosity, and compressibility, using an Equation ofState (EOS) model.A series of rapid pumpouts at different depths can beused to map a formation for selection of where to sample,constrain contamination models to improvecontamination estimation, determine when to sample,and optimize the pumpout parameters to obtain arepresentative sample in the shortest period of time.We have applied this workflow to a number of formationsampling jobs at multiple wells, the realtime resultsmatch with the laboratory analysis result in term ofcontamination level and clean fluid properties(compositions, GOR, bubblepoint, density, etc.)
机译:通常是从开孔获取物理样本发送形成测试仪的一次机会事件井下有有限数量的样品室,无论是在钻孔(LWD)或有线线上运输系统。获取样本,检索,并送到了一个分析实验室,它发生了几个月到几个月后。当实验室有进行分析,该部分已经巩固,也许钻机已经完成了运营并移动了到下一阶段。取样操作的成功是在从右边获得的样本上取得了预测位置(在哪里样本?),在合适的时间到尽量减少钻井液滤液污染(何时样本?),并以保留完整性的方式样品并代表形成液(如何样本?)。数字采样是一种技术可以用于优化何时,地点和物理样本如何进一步增加通过传感器分析收集的信息没有物理上采样的位置。这项工作显示了可以用于的新工作流程用适度高净化外推清洁流体性质快速泵浦的水平。基于这一点外推清洁流体特性,操作员可以做出决定是否继续泵送到如果流体,可以获得物理样本或中止泵送物业推断(数字采样)在该位置足以让操作决策制作。这工作流程从应用主成分开始分析(PCA)到多通道传感器测量在形成测试期间,流体泵出了地层采样操作。因为流体泵出了仅包含两个终点(清洁地层液体和泥滤液),传感器的PCA分数测量在PCA空间中形成一条线,并解决方案可以估计终端乐队传感器测量的物理约束(非负等)。然后,使用趋势拟合方法预测第一个主成分的渐近分数。渐近值可以反转到传感器信号使用PCA反转和传感器信号代表清洁地层流体测量。最后,基于机器学习的构图模型可以用于预测基于的清洁流体组合物传感器信号。然后组合数据用于预测流体物理性质,例如泡泡点,使用等式的粘度和可压缩性国家(EOS)模型。不同深度的一系列快速泵浦可以用于映射形成以选择样本的位置,约束污染模型改进污染估计,确定何时样本,并优化泵浦参数以获得a代表性样本在最短的时间内。我们将此工作流应用于许多形成在多个井中采样作业,实时结果与实验室分析的匹配结果污染水平和清洁流体性质(组成,GOR,泡泡点,密度等)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号