首页> 外文会议>European Conference on Circuit Theory and Design >Role of glycocalyx in attenuation of shear stress on endothelial cells: From in vivo experiments to microfluidic circuits
【24h】

Role of glycocalyx in attenuation of shear stress on endothelial cells: From in vivo experiments to microfluidic circuits

机译:糖萼在减少内皮细胞剪切应力中的作用:从体内实验到微流控回路

获取原文

摘要

Shear stress generated by blood flow is transmitted to endothelial cells lining blood vessels through the cell free layer at the blood/vessel interface, consisting of a blood plasma zone and the glycocalyx, a gel-like lining of the endothelium, composed of polysaccharides attached to the cell wall. This multilayered system determines how flow is sensed and converted into biochemical responses by the endothelium by mechanotransduction. Analysis of flow profiles in this system using particle velocimetry is not possible since the gel-like structure affects particle trajectories, precluding obtaining information on shear stress. Likewise using numerical simulations of flow and transport is not viable for fully resolving the mechanical effects within the glycocalyx and their transmission to the endothelial surface, and understanding how shear stress is sensed by the endothelium requires complex and expensive in vivo and in vitro experimentation. Equivalent microfluidic models/circuits would allow to explicitly study the impact of glycocalyx topology on shear stress in controlled systems at a fraction of the cost. We propose a continuum scale model that treats the glycocalyx as a porous medium with known porosity and permeability, while accounting for varying blood viscosity. The model is amenable to analytical solution for the time-averaged velocity profile within and above the glycocalyx, and its predictions match in vivo data, providing a framework to design microfluidic systems using micro patterns designed to simulate the macroscopic effects of the biological glycocalyx.
机译:血流产生的剪切应力通过血液/血管界面处的无细胞层传递到衬里血管的内皮细胞,该自由层由血浆区和糖萼(内皮的凝胶状衬里)组成,其由附着在其上的多糖组成细胞壁。这种多层系统决定了如何通过机械转导通过内皮来感测血流并将其转化为生化反应。由于凝胶状结构会影响颗粒轨迹,因此无法获得有关剪切应力的信息,因此无法使用颗粒测速仪分析该系统中的流动剖面。同样,使用流动和传输的数值模拟无法完全解决糖萼内部的机械效应及其向内皮表面的传递,要了解内皮如何感知剪切应力,就需要进行复杂且昂贵的体内和体外实验。等效的微流体模型/电路将允许以成本的一小部分来明确研究糖萼拓扑对受控系统中切应力的影响。我们提出了一个连续尺度模型,该模型将糖萼视为具有已知孔隙率和渗透率的多孔介质,同时考虑了血液粘度的变化。该模型适用于糖萼内外的时间平均速度分布的解析解,其预测与体内数据相匹配,从而提供了使用微模式设计微流控系统的框架,该微模式设计为​​模拟生物糖萼的宏观效应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号