首页> 外文会议>ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2007 >HIGH PERFORMANCE DIRICHLET PARAMETRIZATION THROUGH TRIANGULAR BEZIER SURFACE INTERPOLATION FOR DEFORMATION OF CAE MESHES
【24h】

HIGH PERFORMANCE DIRICHLET PARAMETRIZATION THROUGH TRIANGULAR BEZIER SURFACE INTERPOLATION FOR DEFORMATION OF CAE MESHES

机译:通过三角贝塞尔曲面插值实现CAE网格变形的高性能狄利克雷参数化

获取原文

摘要

We present a method that extends the physics-based Dirichlet parametrization for applications concerning deformation of CAE meshes. Developed for a geometric surface feature framework called Direct Surface Manipulation, Dirichlet parametrization offers a number of operational flexibilities, such as its ability to use a single polynomial blending function to control deformation of a surface region subject to multiple user-specified displacement conditions. Dirichlet parametrization considers the domain of deformation as 2D steady-state conductive heat flow and solves for unique temperature distribution over the deformation domain using the finite element analysis (FEA) method. The result is used for evaluation of the polynomial blending function during surface deformation. The original Dirichlet parametrization, however, suffers from two limitations. First, because the 2D FEA mesh required for solving the steady-state heat transfer problem is obtained by directly projecting the affected 3D mesh onto a plane (deformation domain), both parameterization quality and performance depend on the structural characteristics of the projected 2D mesh (type of elements, node density, etc.) rather than geometrical characteristics of the deformation domain. Second, projecting a 3D mesh to create a 2D FEA mesh can be problematic when multiple areas of a 3D mesh are projected on the plane and overlap each other. Improvement techniques are presented in this paper. Instead of projecting the 3D mesh onto the plane to form the 2D FEA mesh, an auxiliary mesh is created based on geometric characteristics of the deformation domain, such as its size and boundary shape. Delaunay triangulation with an area constraint is applied in meshing the deformation region. The result is used as the 2D FEA mesh for solving the steady-state heat flow problem using the finite element method. Temperature of an affected node of the 3D mesh is obtained by interpolation in two steps. First, the node is projected onto the 2D FEA mesh, and the intersecting triangle is found. Second, the temperature at the intersection is obtained by interpolating the temperatures at the three vertices of the triangle using the cubic, triangular Bezier interpolant. The result is equated to the temperature of the node. The use of an auxiliary mesh eliminated mesh-dependency for Dirichlet parametrization. The use of triangular cubic Bezier interpolant results in better continuity condition of the interpolating surface between adjacent elements than linear interpolation. This allows us to employ a moderate size FEA mesh for computational efficiency. Implementation of the method is discussed and results are demonstrated.
机译:我们提出了一种扩展基于物理学的Dirichlet参数化的方法,用于涉及CAE网格变形的应用。 Dirichlet参数化是为称为直接表面操纵的几何表面特征框架而开发的,它提供了许多操作灵活性,例如,它可以使用单个多项式混合功能来控制受多个用户指定的位移条件影响的表面区域的变形。 Dirichlet参数化将变形范围视为2D稳态传导热流,并使用有限元分析(FEA)方法求解变形范围内的唯一温度分布。该结果用于评估表面变形期间的多项式混合函数。但是,原始的Dirichlet参数化具有两个局限性。首先,由于解决稳态传热问题所需的2D FEA网格是通过将受影响的3D网格直接投影到平面(变形域)上而获得的,因此参数化质量和性能都取决于所投影的2D网格的结构特征(元素类型,节点密度等),而不是变形域的几何特征。其次,当3D网格的多个区域投影在平面上并且彼此重叠时,投影3D网格以创建2D FEA网格可能会出现问题。本文提出了改进技术。不是将3D网格投影到平面上以形成2D FEA网格,而是根据变形域的几何特征(例如其大小和边界形状)创建辅助网格。将具有区域约束的Delaunay三角剖分应用于变形区域的网格划分。结果用作二维FEA网格,使用有限元方法解决稳态热流问题。 3D网格的受影响节点的温度是通过两步插值获得的。首先,将节点投影到2D FEA网格上,然后找到相交的三角形。其次,通过使用三次三角形Bezier插值对三角形的三个顶点处的温度进行插值来获得交点处的温度。结果等于节点的温度。使用辅助网格消除了Dirichlet参数化的网格依赖性。三角三次方贝塞尔曲线插值的使用比线性插值在相邻元素之间的插值曲面的连续性更好。这使我们能够采用中等大小的FEA网格来提高计算效率。讨论了该方法的实现并证明了结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号