首页> 外文会议>応用物理学会秋季学術講演会;応用物理学会 >Double layered perovskites by surface molecular engineering to achieve high efficiency dopant-free P3HT based HTM perovskite solar cells
【24h】

Double layered perovskites by surface molecular engineering to achieve high efficiency dopant-free P3HT based HTM perovskite solar cells

机译:通过表面分子工程技术制成的双层钙钛矿,可实现基于P3HT的高效无掺杂HTM钙钛矿太阳能电池

获取原文

摘要

The discovery of organo-lead halide perovskite has offered the promising candidates of next-generation solar cells with Power Conversion Efficiency (PCE) surpassing over 20% in just a few years. Such a steep rise in PCE is credited to outstanding optoelectronic properties such as absorption coefficient, long charge carrier diffusion length, high carrier mobility and favorable bandgap in relation with visible light. Perovskite solar cells typically structure electron transport layer and hole transport layer enclosed the perovskite active layer. Prior to its performance, only two organic hole transport materials (HTM) have been widely reported and have led to considerably high PCE: spiro-OMeTAD and poly(triarylamine) (PTAA). However these polymeric HTM have several drawbacks in combination of the need for hygroscopic dopants in its application that initiate degradation of the perovskite active layer. Poly(3-hexylthiophene) (P3HT) is a widely used alternative organic HTM with excellent electric conductivity and easily fabrication method compare to the previously stated HTM, but suffering lower open-circuit voltage (Voc) due to additional non-radiative recombination at the perovskite/P3HT interlayer . Another study has also revealed that flat P3HT surface provide physically poor contact constrain efficient hole transport from perovskite to P3HT . To tackle these issues, here we report the us e of hydrophobic secondary alkyl ammonium cation and methylamine oxide can be successfully assembled to form very thin insulating layer from perovskite surface itself simply by in situ reaction. The surface molecular engineered thin layer perovskite surface then so be called double layered perovskite aimed at modifying the morphology of the perovskite/P3HT interface will provide better contact from alkyl molecules of which could give favourable van der Waals interaction. Moreover the N+(CH_3)3- moiety giving the hydrophobicity effect to hinder direct exposure to moist air. Therefore these work not only trying to tackle the low PCE problem but also generate a strategy to improve stability by modifying the interface of perovskite/P3HT.
机译:有机铅卤化物钙钛矿的发现为下一代太阳能电池提供了有希望的候选者,其功率转换效率(PCE)在短短几年内超过20%。 PCE的这种急剧上升归因于杰出的光电性能,例如吸收系数,长的载流子扩散长度,高的载流子迁移率以及相对于可见光的有利带隙。钙钛矿太阳能电池通常构成电子传输层和包围钙钛矿活性层的空穴传输层。在其性能之前,只有两种有机空穴传输材料(HTM)被广泛报道并导致相当高的PCE:螺-OMeTAD和聚三芳基胺(PTAA)。然而,这些聚合物HTM在其应用中结合需要吸湿性掺杂剂而具有一些缺点,这些缺点引发了钙钛矿活性层的降解。聚(3-己基噻吩)(P3HT)是一种广泛使用的替代有机HTM,与先前所述的HTM相比,它具有出色的导电性和易于制造的方法,但由于在该处的附加非辐射复合,开路电压(Voc)较低。钙钛矿/ P3HT中间层。另一项研究还表明,平坦的P3HT表面在物理上接触不良,从而限制了从钙钛矿到P3HT的有效空穴传输。为了解决这些问题,我们在此报告了疏水性仲烷基铵阳离子和甲胺氧化物的使用,只需通过原位反应就可以成功地将钙钛矿表面本身组装成非常薄的绝缘层。然后将表面分子工程化的薄层钙钛矿表面称为所谓的双层钙钛矿,其旨在改变钙钛矿/ P3HT界面的形态,将提供与烷基分子的更好的接触,该烷基分子可产生有利的范德华相互作用。此外,N +(CH_3)3-部分具有疏水作用,以防止直接暴露在潮湿的空气中。因此,这些工作不仅试图解决低PCE问题,而且通过改变钙钛矿/ P3HT的界面产生了提高稳定性的策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号