首页> 外文会议>International Conference on Numerical Simulation of Optoelectronic Devices >Nucleation chronology and electronic properties of In(As,Sb,P) graded-composition quantum dots
【24h】

Nucleation chronology and electronic properties of In(As,Sb,P) graded-composition quantum dots

机译:In(As,Sb,P)梯度组成量子点的成核年表和电子性质

获取原文

摘要

We have studied nucleation process and electronic properties of graded-composition quantum dots (GCQDs) grown from In-As-Sb-P in the liquid phase for application in mid-infrared devices like photoresistors or photoconductive cells. The GCQD ensemble exhibits diameters of 10−120 nm and heights of 2−20 nm. Compositional grading is a typical feature of quantum dots grown in liquid-phase epitaxy (LPE) and our GCQDs exhibit increasing Sb content to their top with a maximum Sb content of 20% and a decreasing P content with its maximum of approx. 15% at their bottom. We have performed systematic simulations of the electronic properties of the GCQDs using an eight-band $mathrm{k}cdot mathrm{p}$ model taking strain and built-in electrostatic potentials into account. Here we have studied the influence of height and diameter of the GCQDs on their absorption spectra as close as possible to the systems observed in experiment. Combining data from the height and diameter distribution of the GCQDs ensemble with absorption energies of similar systems obtained from the simulations, we obtain an absorption spectrum of the ensemble. The simulated spectrum yields a maximum absorption at $3.829 mu mathrm{m}$, which is extremely close to the one observed in experiment. Correspondingly, our simulation setup can be employed for a theory-guided design of GCQDs suited to the requirements of specific devices.
机译:我们已经研究了从In-As-Sb-P液相生长的梯度合成量子点(GCQD)的成核过程和电子性能,这些量子点可用于中红外器件(如光敏电阻或光电导电池)。 GCQD集合的直径为10-120 nm,高度为2-20 nm。成分分级是液相外延(LPE)中生长的量子点的典型特征,我们的GCQD的顶部Sb含量最高,最大Sb含量为20%,P含量最高,P含量下降。他们的底部占15%。我们已经使用八波段对GCQD的电子特性进行了系统仿真 $ \ mathrm {k} \ cdot \ mathrm {p} $ 考虑应变和内置静电势的模型。在这里,我们研究了GCQD的高度和直径对其吸收光谱的影响,使其尽可能接近实验中观察到的系统。将GCQD集合的高度和直径分布的数据与从模拟中获得的类似系统的吸收能量相结合,我们可以获得集合的吸收光谱。模拟光谱在以下位置产生最大吸收 $ 3.829 \ \ mu \ mathrm { m} $ ,与实验中观察到的非常接近。相应地,我们的仿真设置可用于针对特定设备要求的GCQD的理论指导设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号