首页> 外文会议>Geo-congress >Equivalent Top Loading Curve Extrapolations and Their Impact on the Resistance Factor Calibration
【24h】

Equivalent Top Loading Curve Extrapolations and Their Impact on the Resistance Factor Calibration

机译:等效顶部荷载曲线外推法及其对电阻系数校准的影响

获取原文

摘要

The primary objective of the load and resistance factor design (LRFD) method used in the deep foundation geotechnical design industry is to differentiate uncertainties in loading from those existing in the resistance following a probability-based theory. The probability of occurrence associated with loads is reflected by a load factor, γ, and those uncertainties associated with the geotechnical resistance are reflected by the resistance factor, Φ. The calibration process for deep foundations is completed to determine resistance factors, Φ, using statistical data regarding loads and geotechnical resistances. One of the important factors used for the calibration process is the bias, λ, defined as the ratio of the nominal resistance determined from results of a full-scale load test, Qm, to the nominal resistance determined using an agreed predictive model, Q_p. The bi-directional static load test (BDSLT) is widely used to test the deep foundation's geotechnical resistance. After the load test is completed, the measured data are analyzed to determine required parameters for construction of the equivalent top-loaded (ETL) curve. The ETL curve is used to evaluate the geotechnical capacity using defined approaches. However, the ETL curve does not always reach 100% or more of the required values for a defined geotechnical resistance determination method. Therefore, extrapolation methods are sometimes required to extend the ETL curve to load and displacement values necessary for a defined method. The extrapolation process will introduce uncertainties which will further impact the calibration process. This paper presents a qualitative assessment of the American Association of State Highway and Transportation Officials (AASHTO), and the Federal Highway Administration (FHWA) predictive models by comparing the predicted nominal resistance to measured nominal resistance using the modified Davisson's criteria, 5% relative settlement, and the 10% relative settlement approach with primary focus on drilled shafts. From the comparison analysis, with a coefficient of determination of 80%, the modified Davisson's criterion was considered the method of analysis for this study. Furthermore, the extrapolation effect on resistance factors was explored by calibrating these factors using extrapolated and non-extrapolated ETL curves. The calibration process included 30 drilled shaft cases where ETL curves reached displacements equivalent to those determined using the Davisson's criteria.
机译:在深基础岩土设计行业中使用的载荷和阻力因子设计(LRFD)方法的主要目标是,基于基于概率的理论,将载荷中的不确定性与阻力中存在的不确定性区分开来。与荷载有关的发生概率由荷载系数γ反映,与岩土工程阻力有关的不确定性由阻力系数Φ反映。使用有关载荷和岩土阻力的统计数据,完成了深层基础的校准过程,以确定阻力因子Φ。校准过程中使用的重要因素之一是偏差λ,定义为根据满载测试Qm的结果确定的标称电阻与使用商定的预测模型Q_p确定的标称电阻之比。双向静载荷测试(BDSLT)被广泛用于测试深层基础的岩土抗力。负载测试完成后,将对测得的数据进行分析,以确定用于构建等效的最大负载(ETL)曲线所需的参数。 ETL曲线用于使用定义的方法来评估岩土能力。但是,ETL曲线并不总是达到定义的岩土阻力确定方法所需值的100%或更高。因此,有时需要使用外推方法将ETL曲线扩展到定义方法所需的载荷和位移值。外推过程将引入不确定性,这将进一步影响校准过程。本文通过使用修改的戴维森标准,5%相对沉降来比较预测的名义电阻与测量的名义电阻,从而对美国国家公路和运输官员协会(AASHTO)和联邦公路管理局(FHWA)的预测模型进行定性评估。 ,以及10%的相对沉降方法,主要针对钻探井筒。通过比较分析,确定系数为80%,修改后的Davisson准则被认为是本研究的分析方法。此外,通过使用外推和非外推ETL曲线对这些因子进行校准,探索了对耐药因子的外推效应。校准过程包括30个钻探的轴箱,其中ETL曲线达到的位移等于使用戴维森标准确定的位移。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号