首页> 外文会议>IEEE International Solid- State Circuits Conference >18.1 A Self-Health-Learning GaN Power Converter Using On-Die Logarithm-Based Analog SGD Supervised Learning and Online Tj-Independent Precursor Measurement
【24h】

18.1 A Self-Health-Learning GaN Power Converter Using On-Die Logarithm-Based Analog SGD Supervised Learning and Online Tj-Independent Precursor Measurement

机译:18.1使用基于对数对数的模拟SGD监督学习和在线T j 独立前体测量的自学习型GaN功率转换器

获取原文

摘要

As GaN technology proliferates in modern power electronics, reliability of GaN-based circuits has become the biggest hurdle for commercialization. Sustaining largest voltage and current stresses in power circuits, power devices on average account for over 31% of failures [1]. With new problems such as current collapse and thermal aging, GaN power circuits deem to face more reliability challenges compared to their silicon counterparts [2]. In such a situation, health condition monitoring is of paramount importance. As shown in Fig. 18.1.1, due to hot electron injection and charge trapping effects, current collapse weakens 2-dimensional electron gas (2DEG) layer in a GaN switch over time, elevating its dynamic on-resistance $mathrm{r}_{mathrm{DS}_{-}mathrm{On}}$ gradually. The clear link between $mathrm{r}_{mathrm{DS}_{-}mathrm{ON}}$ and aging (Fig. 18.1.1) makes $mathrm{r}_{mathrm{DS}_{-}mathrm{ON}}$ a widely accepted precursor for GaN condition monitoring [3]–[5]. However, measuring rDS_ ON is not a simple task. Traditionally, r DS_ ON can be measured offline by shutting- down the affiliated circuit. However, the- approach can be highly inaccurate due to significant discrepancy between offline and online operation conditions. To mitigate this issue, in-situ condition monitoring can be employed [3], [4]. However, it still requires designated test periods, causing interruptions of operation and increased test cost. A recent study applies machine learning (ML) to achieve online aging prognosis [5]. However, the ML algorithm is generic and is built on a standard digital basis. It requires sophisticated data processing and communication modules, causing substantial power and cost overheads. More importantly, the off-board look-up-table-based training process has to be performed offline, leading to similar drawbacks encountered in other approaches. Overall, all approaches reviewed here demand significant resources and time for either trimming, calibration or training in order to compensate for variations and errors induced by the fabrication process, work condition, user influence, etc. It would be much more desirable and efficient if a “plug-and-play” online aging prognosis method can be developed, which, as an essential part of a power circuit, requires no trimming and calibration.
机译:随着GaN技术在现代电力电子技术中的普及,基于GaN的电路的可靠性已成为商业化的最大障碍。在电力电路中承受最大的电压和电流应力,电力设备平均占故障的31%以上[1]。与电流崩塌和热老化等新问题相比,GaN电源电路被认为比硅电源电路面临更多的可靠性挑战[2]。在这种情况下,健康状况监控至关重要。如图18.1.1所示,由于热电子注入和电荷陷阱效应,电流崩塌会随着时间的流逝削弱GaN开关中的二维电子气(2DEG)层,从而提高了其动态导通电阻 $ \ mathrm {r} _ {\ mathrm {DS} _ {-} \ mathrm {On}} $ 逐步地。两者之间的明确联系 $ \ mathrm {r} _ {\ mathrm {DS} _ {-} \ mathrm {ON}} $ 和老化(图18.1.1)使得 $ \ mathrm {r} _ {\ mathrm {DS} _ {-} \ mathrm {ON}} $ 广泛用于GaN状态监测的前体[3] – [5]。但是,测量rDS_ ON并非简单的任务。传统上,可以通过关闭附属电路来离线测量r DS_ ON。然而,由于离线和在线操作条件之间的巨大差异,该方法可能非常不准确。为了减轻这个问题,可以采用现场状况监测[3],[4]。但是,它仍然需要指定的测试时间,从而导致操作中断并增加测试成本。最近的一项研究应用机器学习(ML)来实现在线老化预后[5]。但是,ML算法是通用算法,是在标准数字基础上构建的。它需要复杂的数据处理和通信模块,从而导致大量的电源和成本开销。更重要的是,基于场外查找表的训练过程必须脱机执行,从而导致其他方法遇到类似的缺陷。总的来说,这里所回顾的所有方法都需要大量的资源和时间进行修整,校准或培训,以补偿由制造过程,工作条件,用户影响等引起的变化和误差。可以开发“即插即用”的在线老化预测方法,该方法作为电源电路的重要组成部分,不需要微调和校准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号