首页> 外文会议>AIAA SciTech forum and exposition >Micromechanics-Enriched Finite Element Modeling of Composite Structures with Fiber Waviness and Void Defects
【24h】

Micromechanics-Enriched Finite Element Modeling of Composite Structures with Fiber Waviness and Void Defects

机译:具有纤维波纹和空隙缺陷的复合结构的微机械富集有限元建模

获取原文

摘要

Voids and fiber waviness are two of the most common types of defects induced during the fabrication process of composites. The objective of this work is to quantify the negative effects of these defects on the load bearing capacity of AS4/8552 composite structures. Three-dimensional representative volume elements (RVEs) are created with fiber, matrix, and interface elements to model composite structures for use in a micromechanics-enriched finite element modeling framework. Defects such as fiber waviness, matrix porosity, and nonuniform fiber distributions are explicitly described in the model to predict the response and failure properties of the RVE. To produce a high-fidelity model that can accurately predict the measured ply level material properties, studies are performed on the fiber spacing, fiber diameter, and the number of fibers in the RVE. Single loading cases are applied to the RVE and the results for the loading cases of transverse compression, transverse tension, shear, longitudinal tension, and longitudinal compression are presented. In general, fiber waviness and voids lower strengths of the composite and even change failure mechanisms in some cases. A digital material mode is developed to characterize the effects of defects on ply-level properties based on the micro-level model predictions. To demonstrate the effects of defects on a ply-level component, an open-hole compression test case with a horizontal and vertical void near the drilled hole is analyzed using the material property reduction data from the micro-level model. Results show agreement with experimental data, demonstrating the effectiveness of the micromechanics-enriched modeling approach.
机译:空隙和纤维波纹度是复合材料制造过程中最常见的两种缺陷类型。这项工作的目的是量化这些缺陷对AS4 / 8552复合结构的承载能力的负面影响。用纤维,基质和界面元素创建三维有代表性的体积元素(RVE),以对复合结构进行建模,以用于富含微力学的有限元建模框架。在模型中明确描述了诸如纤维波纹度,基体孔隙率和不均匀纤维分布之类的缺陷,以预测RVE的响应和失效特性。为了生成可以精确预测测得的层级材料特性的高保真度模型,需要对纤维间距,纤维直径和RVE中的纤维数量进行研究。将单个加载工况应用于RVE,并给出了横向压缩,横向拉伸,剪切,纵向拉伸和纵向压缩的加载情况的结果。通常,纤维的起伏和空隙会降低复合材料的强度,甚至在某些情况下会改变破坏机理。基于微观模型预测,开发了一种数字材料模式来表征缺陷对层级特性的影响。为了证明缺陷对层级组件的影响,使用来自微观级模型的材料特性降低数据分析了在钻孔附近具有水平和垂直空隙的裸眼压缩测试案例。结果表明与实验数据吻合,证明了微力学富集的建模方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号