【24h】

Lithium Ion Batteries Diagnosis for Electric Vehicle Applications

机译:电动汽车应用中的锂离子电池诊断

获取原文

摘要

This poster presents a lithium ion battery State-of-charge (SOC) and the capacity estimation technique for electric vehicle applications. The proposed strategy achieves online parameter estimation by making use of adaptive control theory and Kalman observer. The convergence and stability are guaranteed by Lyapunov's direct method. The estimation strategy takes into account the surface temperature variation. Experiments have been carried-out under different operating temperature conditions and various discharge currents. The effectiveness of the proposed method is verified by experiments for different aging states. State-of-Health (SOH) is an important aspect in Battery Management Systems (BMS) since it is considered, as the battery's energy. Therefore, bad SOH estimation ultimately results in damaging the battery and reducing its lifespan. Similar to other chemical-based energy storage systems, the battery's use generates irreversible physical and chemical changes and hence, its performance tends to deteriorate gradually over its lifetime. Several studies have been presented for lithium-ion battery calendar aging and show an internal resistance increase and a capacity decrease. So, the definition of the End-of-Life (EoL) of the battery depends on these aging indicators. The limit is generally set to 80% of the nominal capacity. In our case, the cells are prepared at different State-of-Charge (SOC) values and stressed with different temperatures. The cell parameters as the internal resistance and the capacity are measured periodically with well-defined discharge conditions. In this study, a 20Ah, 3.2V Lithium iron phosphate battery, LiFeP04, is used in the experiments. The battery is characterized, initially and after each aging phase, at different constant currents and at different operating temperatures. In order to study the evolution of the OCV-SOC characterization during the battery lifetime, we have compared the OCV-SOC characterization for different aging states. The results shown that the different between the OCV-SOC estimation and measured is negligible from one aging state to another.Using the experimental protocol results for a constant current, the internal resistance and the capacity evolution for different currents and the different operating temperatures are measured and estimated, and compared. Conclusion : In this study, an online SoC and SOH estimation method is presented for lithium-ion batteries. The proposed strategy capitalizes on the capabilities of Kalman filtering for the design of an extended Kalman observer to estimate SOC. Moreover, the adaptive estimation technique achieves online robust SoH estimation. Unlike other methods, this paper presents an online diagnosis method considering the surface temperature variation of the battery. Moreover, only voltage, current and temperature measurements are required, which reduces the number of sensors compared to other methods. The effectiveness of the proposed online observer is shown through a set of experiments. Results highlight its good performance in parameters estimation for different conditions of operating temperature, discharging current and battery lifetime.
机译:该海报介绍了锂离子电池的充电状态(SOC)和电动汽车应用的容量估算技术。所提出的策略利用自适应控制理论和卡尔曼观测器实现了在线参数估计。 Lyapunov的直接方法保证了收敛性和稳定性。估计策略考虑了表面温度变化。已经在不同的工作温度条件和不同的放电电流下进行了实验。通过对不同老化状态的实验验证了该方法的有效性。健康状态(SOH)是电池管理系统(BMS)的重要方面,因为它被视为电池的能量。因此,不良的SOH估算最终会导致电池损坏并缩短其使用寿命。与其他基于化学的能量存储系统类似,电池的使用会产生不可逆的物理和化学变化,因此,其性能会在其使用寿命内逐渐降低。已经针对锂离子电池压延老化提出了几项研究,这些研究表明内部电阻增加而容量减小。因此,电池寿命终止(EoL)的定义取决于这些老化指示器。该限制通常设置为标称容量的80%。在我们的情况下,以不同的荷电状态(SOC)值准备电池,并在不同的温度下承受压力。在明确定义的放电条件下,定期测量电池参数(如内部电阻和容量)。在这项研究中,实验中使用了20Ah,3.2V磷酸铁锂电池LiFePO4。最初,在每个老化阶段之后,在不同的恒定电流和不同的工作温度下对电池进行表征。为了研究电池寿命期间OCV-SOC表征的演变,我们比较了不同老化状态下的OCV-SOC表征。结果表明,从一种老化状态到另一种老化状态,OCV-SOC估算值与测量值之间的差异可以忽略不计。使用恒定电流的实验方案结果,测量了不同电流和不同工作温度下的内阻和容量演变并进行估算和比较。结论:在这项研究中,提出了一种用于锂离子电池的在线SoC和SOH估算方法。所提出的策略利用卡尔曼滤波的功能来设计扩展的卡尔曼观测器以估计SOC。此外,自适应估计技术可实现在线鲁棒SoH估计。与其他方法不同,本文提出了一种考虑电池表面温度变化的在线诊断方法。此外,仅需要测量电压,电流和温度,与其他方法相比,减少了传感器的数量。建议的在线观察者的有效性通过一系列实验得到了证明。结果突出显示了其在不同工作温度,放电电流和电池寿命条件下的参数估计中的良好性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号