首页> 外文会议>IEEE International Conference on Big Data >Frequent Causal Pattern Mining: A Computationally Efficient Framework For Estimating Bias-Corrected Effects
【24h】

Frequent Causal Pattern Mining: A Computationally Efficient Framework For Estimating Bias-Corrected Effects

机译:频繁的因果模式挖掘:一种用于估计偏差校正效应的计算有效框架

获取原文

摘要

Our aging population increasingly suffers from multiple chronic diseases simultaneously, necessitating the comprehensive treatment of these conditions. Finding the optimal set of drugs for a combinatorial set of diseases is a combinatorial pattern exploration problem. Association rule mining is a popular tool for such problems, but the requirement of health care for finding causal, rather than associative, patterns renders association rule mining unsuitable. To address this issue, we propose a novel framework based on the Rubin-Neyman causal model for extracting causal rules from observational data, correcting for a number of common biases. Specifically, given a set of interventions and a set of items that define subpopulations (e.g., diseases), we wish to find all subpopulations in which effective intervention combinations exist and in each such subpopulation, we wish to find all intervention combinations such that dropping any intervention from this combination will reduce the efficacy of the treatment. A key aspect of our framework is the concept of closed intervention sets which extend the concept of quantifying the effect of a single intervention to a set of concurrent interventions. Closed intervention sets also allow for a pruning strategy that is strictly more efficient than the traditional pruning strategy used by the Apriori algorithm. To implement our ideas, we introduce and compare five methods of estimating causal effect from observational data and rigorously evaluate them on synthetic data to mathematically prove (when possible) why they work. We also evaluated our causal rule mining framework on the Electronic Health Records (EHR) data of a large cohort of 152000 patients from Mayo Clinic and showed that the patterns we extracted are sufficiently rich to explain the controversial findings in the medical literature regarding the effect of a class of cholesterol drugs on Type-II Diabetes Mellitus (T2DM).
机译:我国老龄化人口越来越多地同时患有多种慢性疾病,因此有必要对这些疾病进行综合治疗。为一组组合疾病找到最佳药物是组合模式探索问题。关联规则挖掘是解决此类问题的一种流行工具,但是需要卫生保健查找因果关系模式而不是关联模式,这使得关联规则挖掘不合适。为了解决这个问题,我们提出了一个基于鲁宾-尼曼因果模型的新颖框架,用于从观测数据中提取因果规则,并纠正许多常见的偏见。具体来说,给定一组干预措施和一组定义亚人群(例如疾病)的项目,我们希望找到存在有效干预措施组合的所有亚人群,并且在每个此类亚人群中,我们希望找到所有干预措施组合,从而删除任何这种组合的干预将降低治疗效果。我们框架的一个关键方面是封闭式干预集的概念,该概念将量化单个干预效果的概念扩展到一组并发干预。封闭的干预集还允许使用一种修剪策略,该策略严格比Apriori算法使用的传统修剪策略更有效。为了实现我们的想法,我们介绍并比较了从观测数据中估计因果效应的五种方法,并对合成数据进行了严格的评估,以数学方式(可能时)证明它们起作用的原因。我们还根据来自Mayo Clinic的152000名患者的大型队列的电子健康记录(EHR)数据评估了因果规则挖掘框架,并表明我们提取的模式足够丰富,足以解释医学文献中有关“乙肝”疗效的有争议的发现。 II型糖尿病(T2DM)上的一类胆固醇药物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号