首页> 外文会议>ASME Pressure Vessels and Piping conference >INVESTIGATION OF THE FATIGUE BEHAVIOR OF AUSTENITIC STAINLESS STEELS AND THEIR WELDS FOR REACTOR INTERNALS UNDER COMBINED LOW CYCLE (LCF), HIGH CYCLE (HCF) AND VERY HIGH CYCLE (VHCF) OPERATIONAL LOADING CONDITIONS
【24h】

INVESTIGATION OF THE FATIGUE BEHAVIOR OF AUSTENITIC STAINLESS STEELS AND THEIR WELDS FOR REACTOR INTERNALS UNDER COMBINED LOW CYCLE (LCF), HIGH CYCLE (HCF) AND VERY HIGH CYCLE (VHCF) OPERATIONAL LOADING CONDITIONS

机译:低周(LCF),高周(HCF)和极高周(VHCF)组合工作条件下奥氏体不锈钢及其反应堆内部焊缝的疲劳行为研究

获取原文

摘要

The fatigue assessment of safety relevant components is of importance for ageing management with regard to safety and reliability of nuclear power plants. Reactor internals are subjected to thermo-mechanical fatigue induced by operational temperature transients and to flow induced vibrations. The resulting complex loading collectives induce low cycle (LCF), high cycle (HCF) and even very high cycle (VHCF) fatigue and their interaction. The existing methodological gaps within the current fatigue assessment approach are to be closed. Design code fatigue analyses use defined loads and frequencies of occurrence (specified or measured). High cycle and very high cycle fatigue loadings are not explicitly considered except for endurance limit studies of reactor internals. Furthermore, design fatigue curves in the applicable international design codes were extended by extrapolation from originally 10~6 up to 10~(11) load cycles. However, the existing data base for load cycles equal to or above 107 is still highly insufficient. The cyclic deformation behavior of the material in question (austenitic stainless steel 1.4550) is different depending on the fatigue regime respectively the applied load or deformation amplitude. While the LCF behavior is already well investigated and the basic behavior in the HCF regime is fairly well known the VHCF cyclic deformation behavior has not been characterized in sufficient detail so far. As a consequence, the real damage accumulation of variable amplitude combinations consisting of LCF- and HCF/VHCF loads is still widely unknown. A new cooperative R&D project of MPA Stuttgart, TU Kaiserslautern and Framatome GmbH addresses the existing gaps of knowledge presented above and has recently been launched. The scheduled first phase of the project will entail the following key items: 1. Substantiation of the threshold strain amplitude ε_a ≥0.1% for the consideration of Environmentally Assisted Fatigue (EAF) conditions in the HCF regime; 2. Basic characterization of the HCF and VHCF fatigue behavior at relevant operational temperatures in air at 10~6- 10~(10) load cycles; 3. Fatigue behavior at variable amplitude loading (combination of LCF / HCF and LCF / VHCF); 4. Fatigue behavior of welds in the region of high numbers of load cycles (HCF regime > 10~5 load cycles and VHCF> 10~7); 5. Validation of the existing design and assessment procedures (base material and welded material); 6. Development of a fatigue assessment methodology for reactor internals under consideration of the transient endurance limit and damage accumulation effects. A later second phase of the project will concentrate on the following items: 1. Examination of the fatigue behavior of welded specimens and representative components; 2. Consolidation of the design process from laboratory specimen to real structures and components; 3. Examination of the operational loading characteristics of reactor internals with respect to dominant loadings; 4. Probabilistic consideration of the influence of fatigue assessment on the plant risk (core damage). The project structure will be discussed in detail in the paper.
机译:安全相关组件的疲劳评估对于核电厂的安全性和可靠性的老化管理非常重要。反应堆内部受到操作温度瞬变引起的热机械疲劳和流动引起的振动的影响。由此产生的复杂的载荷集合体会引起低循环(LCF),高循环(HCF)甚至甚高循环(VHCF)疲劳及其相互作用。当前疲劳评估方法中现有的方法学空白将被弥补。设计规范疲劳分析使用定义的载荷和发生频率(指定的或测量的)。除了对反应堆内部零件的耐久极限研究以外,没有明确考虑高周期和非常高周期的疲劳载荷。此外,通过推算将适用的国际设计规范中的设计疲劳曲线从最初的10〜6个载荷循环扩展到10〜(11)个载荷循环。但是,等于或大于107的负载循环的现有数据库仍然非常不足。所讨论的材料(奥氏体不锈钢1.4550)的循环变形行为分别取决于疲劳状态,所施加的载荷或变形幅度而有所不同。尽管已经对LCF行为进行了充分的研究,并且HCF机制中的基本行为是众所周知的,但到目前为止,尚未对VHCF循环变形行为进行足够详细的表征。结果,由LCF和HCF / VHCF载荷组成的可变振幅组合的实际损伤累积仍是未知之数。 MPA斯图加特,TU Kaiserslautern和Framatome GmbH的新合作研发项目解决了上面介绍的现有知识空白,并已于近期启动。该项目计划的第一阶段将涉及以下关键项目:1.考虑HCF体制中的环境辅助疲劳(EAF)条件,确定阈值应变幅度ε_a≥0.1%; 2.在10〜6〜10(10)个负载循环下,空气中相关工作温度下HCF和VHCF疲劳行为的基本特征; 3.可变振幅负载下的疲劳行为(LCF / HCF和LCF / VHCF的组合); 4.在高负荷循环次数(HCF方式> 10〜5个负荷循环,VHCF> 10〜7)区域内的焊缝疲劳行为; 5.验证现有的设计和评估程序(基础材料和焊接材料); 6.在考虑瞬态耐久性极限和损伤累积效应的情况下,开发用于反应堆内部的疲劳评估方法。该项目的下一个第二阶段将集中在以下项目上:1.检查焊接试样和代表性零件的疲劳行为; 2.巩固从实验室标本到真实结构和部件的设计过程; 3.就主要负荷检查反应堆内部的工作负荷特性; 4.概率评估疲劳评估对工厂风险(核心损害)的影响。该项目的结构将在本文中详细讨论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号