首页> 外文会议>ASME international mechanical engineering congress and exposition >Characteristics of a Non-Premixed Rotating Detonation Combustor Using Natural Gas-Hydrogen Blend at Elevated Air-Preheat Temperature and Backpressure
【24h】

Characteristics of a Non-Premixed Rotating Detonation Combustor Using Natural Gas-Hydrogen Blend at Elevated Air-Preheat Temperature and Backpressure

机译:空气-预热温度和背压升高时使用天然气-氢气混合物的非预混旋转爆震燃烧室的特性

获取原文

摘要

Operational characteristics of an air breathing Rotating Detonation Combustor (RDC) fueled by natural gas-hydrogen blends are discussed in this paper. Experiments were performed on a 152 mm diameter uncooled RDC with a combustor to inlet area ratio of 0.2 at elevated inlet temperature and combustor pressure while varying the fuel split between natural gas and hydrogen over a range of equivalence ratios. Experimental data from short-duration (~6sec) tests are presented with an emphasis on identifying detonability limits and exploring detonation stability with the addition of natural gas. Although the nominal combustor used in this experiment was not specifically designed for natural gas-air mixtures, significant advances in understanding conditions necessary for sustaining a stable, continuous detonation wave in a natural gas-hydrogen blended fuel were achieved. Data from the experimental study suggests that at elevated combustor pressures (2-3bar), only a small amount of natural gas added to the hydrogen is needed to alter the detonation wave operational mode. Additional observations indicate that an increase in air inlet temperature (up to 204°C) at atmospheric conditions significantly affects RDC performance by increasing deflagration losses through an increase in the number of combustion (detonation/Deflagration) regions present in the combustor. At higher backpressure levels the RDC exhibited the ability to achieve stable detonation with increasing concentrations of natural gas (with natural gas / hydrogen-air blend). However, losses tend to increase at intermediate air preheat levels (~120°C). It was observed that combustor pressure had a first order influence on RDC stability in the presence of natural gas. Combining the results from this limited experimental study with our theoretical understanding of detonation wave fundamentals provides a pathway for developing an advanced combustor capable of replacing conventional constant pressure combustors typical of most power generation processes with one that produces a pressure gain.
机译:本文讨论了天然气氢共混物燃料的空气呼吸旋转爆轰燃烧器(RDC)的操作特性。在152mm直径的加热RDC上进行实验,其具有燃烧器,进气区域比为0.2,在升高的入口温度和燃烧室压力下,同时改变天然气和氢气之间的燃料在一系列的等效比率之间分裂。从短时间(〜6秒)测试的实验数据提出,重点是通过添加天然气来识别可恶性限制和探索爆轰稳定性。尽管本实验中使用的标称燃烧器没有专门用于天然气 - 空气混合物,但是实现了在天然气 - 氢混合燃料中维持稳定的连续爆炸波所需的理解条件的显着进展。实验研究的数据表明,在升高的燃烧室压力(2-3bar)时,需要在氢气中加入少量的天然气来改变爆轰波操作模式。附加观察表明,在大气条件下,通过增加燃烧器中存在的燃烧(爆炸/净化)区域的增加,通过提高燃烧损耗,在大气条件下的空气入口温度(最多204℃)的增加显着影响RDC性能。在较高的背压级别下,RDC表现出通过增加天然气浓度(具有天然气/氢气混合物)来实现稳定爆轰的能力。然而,损失倾向于在中间空气预热水平(〜120℃)中增加。观察到,燃烧室压力在天然气存在下对RDC稳定性的第一阶影响。将来自该有限实验研究的结果与我们对爆轰波基底神灵的理论理解提供了一种用于开发一种高级燃烧器的途径,该途径能够用一种产生压力增益的典型发电过程替换典型的传统恒压燃烧器的途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号