首页> 外文会议>ASME joint rail conference >Ballast Support Condition Affecting Crosstie Performance Investigated through Discrete Element Method
【24h】

Ballast Support Condition Affecting Crosstie Performance Investigated through Discrete Element Method

机译:离散元法研究影响道岔性能的压载支撑条件

获取原文

摘要

This paper reports on the ballast layer mesoscale behavior, tie-ballast interaction, and ballast-subgrade interaction under five crosstie support conditions, namely full support, lack of rail seat support, lack of center support, high center binding, and severe center binding condition. Discrete Element Method, an effective technique to study particulate natured unbound aggregate materials, i.e., ballast, was adopted in this study. The DEM simulations included one-tie spacing geometry, approximately 11,000 polyhedral particles. The ballast gradation used in DEM models was according to the AREMA No. 3 and No. 4A specifications. The shape properties of ballast particles in DEM models was consistent with field collected samples. The pressure distributions along tie-ballast interface under rail seat load of 10-kips predicted by DEM simulations were in good agreement with the results backcalculated from laboratory tests, which validated the DEM models. Next, DEM simulations considered rail seat loads of 20-kips and 25-kips. The predicted results indicated that support condition is a key factor for predicting normal stress distribution and force transmission within ballast layer. Ballast particles in shoulders and areas with poor support indicated low or negligible contact stresses. Extremely high normal stresses observed in some support conditions often exceeded single particle crushing load limit and thus would cause ballast particle breakage and layer degradation under repeated loading. Further, the tie-ballast pressure captured in some scenarios could be higher than allowable maximum pressure of 85-psi under concrete tie in AREMA standard. Finally, the pressure at bottom of the ballast layer obtained from the DEM simulations were compared with top of subgrade pressure calculated from analytical/empirical equations such as Talbot equation and AREMA manual.
机译:本文报告了在五个交叉支撑条件下的压载层中尺度行为,拉结-压载相互作用和压载-路基相互作用,即完全支撑,缺乏钢轨座椅支撑,缺乏中心支撑,高中心约束力和严重的中心约束条件。离散元素法是研​​究颗粒性质的未结合骨料即压载物的有效技术。 DEM模拟包括一个领带间隔几何结构,大约11,000个多面体粒子。 DEM模型中使用的镇流器等级符合AREMA 3号和4A号规范。 DEM模型中压载颗粒的形状特性与现场采集的样品一致。通过DEM模拟预测的10 ps的钢轨支座载荷作用下,沿道-道interface界面的压力分布与实验室测试反算的结果非常吻合,从而验证了DEM模型的有效性。接下来,DEM仿真考虑了20公斤和25公斤的铁路座椅载荷。预测结果表明支撑条件是预测压载层内法向应力分布和力传递的关键因素。肩膀和支撑不佳的区域中的压载颗粒表明接触应力低或可忽略。在某些支撑条件下观察到的极高的法向应力通常会超过单个颗粒破碎的载荷极限,因此在重复载荷下会导致道ast颗粒破裂和层降解。此外,在某些情况下,所捕获的拉结道ast压力可能会高于AREMA标准中的混凝土拉结下允许的最大最大压力为85 psi。最后,将通过DEM模拟获得的压载层底部的压力与通过分析/经验方程式(例如Talbot方程式和AREMA手册)计算出的路基顶部压力进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号