首页> 外文会议>AIAA/SAE/ASEE joint propulsion conference;AIAA propulsion and energy forum >Modeling of Initial Detonation-mode Acceleration in Pulsed Plasma and Magnetoplasmadynamic Thrusters
【24h】

Modeling of Initial Detonation-mode Acceleration in Pulsed Plasma and Magnetoplasmadynamic Thrusters

机译:脉冲等离子体和磁等离子体动力推力器中初始爆轰模式加速的建模

获取原文

摘要

Gas-fed electromagnetic pulsed plasma accelerators operate by discharging electrical energy into a gas, subsequently ionizing and electromagnetically accelerating propellant. Many efforts to model pulsed accelerators have assumed that the discharge is either short and completely transient, accelerating the gas like a shock by entraining it in a moving current sheet, or that the discharge is relatively long, establishing a stable quasi-steady current distribution through which plasma flows and is accelerated. This idealization encounters problems when thrusters possess some qualities associated with both short and long-pulse-length thrusters. To capture all possible scenarios, a model is presented based upon the idea that all pulsed plasma accelerators first form an accelerating current sheet (detonation mode accelerator) and then, depending upon the pulse length and the manner in which the plasma reaches the thruster exit, it can transition to the quasi-steady acceleration configuration (deflagration mode accelerator). In the present work the detonation mode is investigated, varying controllable parameters to determine their effects on the plasma acceleration process. The primary driver affecting current sheet acceleration is the amount of gas that the the plasma encounters and entrains as it moves towards the thruster exit. The amount of neutral gas the plasma entrains affects the time it takes the plasma to reach the end of the accelerator and changes the corresponding electrical discharge parameters at the end of detonation mode acceleration.
机译:气体供电的电磁脉冲等离子体加速器通过将电能释放到气体中,随后电离并电磁加速推进剂来运行。许多对脉冲加速器建模的努力都假设放电是短暂的并且是完全瞬变的,通过将其夹带在移动的电流表中而像冲击一样加速了气体,或者放电相对较长,从而在整个过程中建立了稳定的准稳态电流分布。血浆流动并加速。当推进器具有与短脉冲和长脉冲推进器相关联的某些质量时,这种理想化会遇到问题。为了捕获所有可能的情况,基于所有脉冲等离子体加速器首先形成一个加速电流片(爆震模式加速器),然后根据脉冲长度和等离子体到达推进器出口的方式,提出了一个模型,它可以过渡到准稳态加速配置(爆燃模式加速器)。在目前的工作中,研究了爆震模式,通过改变可控参数来确定其对等离子加速过程的影响。影响电流表加速度的主要驱动因素是等离子体在朝向推进器出口移动时遇到并夹带的气体量。等离子体所夹带的中性气体的量会影响等离子体到达加速器末端所需的时间,并在爆炸模式加速结束时改变相应的放电参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号