首页> 外文会议>AIAA/SAE/ASEE joint propulsion conference;AIAA propulsion and energy forum >Investigation into the Feasibility of Using Turbulators in Liquid Rocket Combustion Chamber Cooling Channels Using a Conjugate Heat Transfer Analysis
【24h】

Investigation into the Feasibility of Using Turbulators in Liquid Rocket Combustion Chamber Cooling Channels Using a Conjugate Heat Transfer Analysis

机译:利用共轭传热分析研究在液体火箭燃烧室冷却通道中使用湍流器的可行性

获取原文

摘要

Greater demands on liquid rocket engines require greater thermal performance. Lowering the maximum wall temperature in a nozzle aids in reusability and allows a wider range of engine balances. A conjugate heat transfer analysis is carried out to simulate an 89 kN, hydrogen cooled, thrust chamber environment to determine the feasibility of adding turbulators to the combustion chamber cooling channels. An existing regeneratively cooled chamber is used as a baseline case to be compared against. The investigation includes using delta wedge turbulators in various configurations in the cooling channels to increase the heat transfer through the channel hot wall (wall adjacent to the hot gas wall) and on the two channel sidewalls. Since much research has been conducted on ribbed turbulators, a single case using ribbed turbulators in the cooling channels is also be analyzed for comparison. A conjugate heat transfer analysis is performed using a straight duct with the rib and wedge geometries included, with boundary conditions like those found in the 89 kN thrust chamber. Thirty-six different simulations with various wedge configurations are run to envelope the thermal performance potential of using delta wedges in this cooling channel environment. The goal is to reduce the hot gas side wall temperature at a minimal cost in pressure drop by comparing several configurations against a baseline case. Adding ribs to the cooling channel dropped the maximum hot wall temperature by 10 K, with a 23.7 percent increase in pressure drop, while adding wedges to the cooling channel dropped the temperature by 104 K with a 12.4 percent increase in pressure drop.
机译:对液体火箭发动机的更大要求需要更大的热性能。降低喷嘴辅助设备中的最大壁温度可重用,并允许更广泛的发动机余额。进行共轭传热分析以模拟89kN,氢气冷却,推力室环境,以确定加入湍流器到燃烧室冷却通道的可行性。现有的再生冷却室用作待比较的基线情况。该研究包括在冷却通道中的各种配置中使用Δ楔形湍流器,以通过通道热壁(邻近热气体壁的壁)和两个通道侧壁上增加热传递。由于罗纹湍流器上进行了多大研究,因此还可以分析在冷却通道中使用罗纹湍流器的单个壳体进行比较。使用具有肋和楔形物质的直线管道进行共轭传热分析,其中边界条件如在89kN推力室中发现。使用各种楔形配置的三十六种不同的模拟,以包络在该冷却通道环境中使用δ楔的热性能电位。目标是通过将若干配置与基线壳体进行比较,以最小的压力降低热气体侧壁温度。向冷却通道添加肋条将最大热壁温度降至10 k,压降增加23.7%,同时将楔形到冷却通道的加压降至104 k的压降增加12.4%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号