首页> 外文会议>International congress on advances in nuclear power plants >MECHANISTIC MODELING OF DEPARTURE FROM NUCLEATE BOILING UNDER TRANSIENT SCENARIOS
【24h】

MECHANISTIC MODELING OF DEPARTURE FROM NUCLEATE BOILING UNDER TRANSIENT SCENARIOS

机译:瞬态场景下核沸腾过程的力学建模

获取原文

摘要

The critical heat flux (CHF) corresponding to the departure from nucleate boiling (DNB) is one of the major limiting factors in the design and operation of pressurized water reactors (PWRs). Various predictive tools have been proposed for steady-state conditions. Empirical correlations and look-up tables yield relatively good agreement with specific experimental datasets and are widely used in subchannel codes for PWR transient simulations. However, experimental studies have revealed that during fast transients the CHF values can become significantly higher than those in steady-state or slow transient scenarios, causing this modeling approach to result in overly conservative DNB prediction. This paper presents a mechanistic transient CHF model. Based on prior work, two DNB triggering mechanisms prevail in this model - the hydrodynamic thinning process and the thermal thinning process - both of which rely on the liquid sublayer dryout theory. Both mechanisms evaluate the depletion of the liquid sublayer underneath vapor slugs flowing over the channel. This model is further validated against three sets of power transient experiments at different operating conditions. While it clearly outperforms steady-state approaches and generally agrees closely with measurements, it still remarkably under-estimates CHFfor very fast transients at low pressure. Future investigations will address this limitation.
机译:对应于核心沸腾(DNB)的偏离的临界热量(CHF)是加压水反应器(PWR)的设计和操作中的主要限制因子之一。已经提出了各种预测工具用于稳态条件。经验相关和查找表与特定实验数据集产生相对较好的一致性,并且广泛用于PWR瞬态仿真的子信道代码。然而,实验研究表明,在快速瞬变期间,CHF值可以明显高于稳态或慢速瞬态场景的值,导致这种建模方法导致过度保守的DNB预测。本文介绍了机械瞬态CHF模型。基于先前的工作,在该模型中,两个DNB触发机制普遍 - 流体动力稀释过程和热稀释过程 - 彼此依赖于液体子层干涸理论。这两种机构评估流动在通道上的蒸汽块下方的液体子层的耗尽。该模型进一步验证了不同操作条件下的三组电力瞬态实验。虽然它显然优于稳态方法,并且通常与测量密切合作,但它仍然在低压下估计黄威病极快的瞬态。未来的调查将解决这一限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号