首页> 外文会议>SPIE Astronomical Telescopes + Instrumentation Conference >Giant Magellan Telescope Site and Enclosure Computational Fluid Dynamics Modeling and Analysis
【24h】

Giant Magellan Telescope Site and Enclosure Computational Fluid Dynamics Modeling and Analysis

机译:麦哲伦巨型望远镜的站点和外壳计算流体动力学建模与分析

获取原文

摘要

The Giant Magellan Telescope (GMT) is currently planned for construction at Las Campanas Peak in northern Chile. Part of the next generation of extremely large telescopes, GMT will be one of the most powerful ground-based telescopes in operation in the world. Due to the larger aperture envisioned for GMT, characterization and control of the air flow entering and circulating within the enclosure will be required to maintain the highest possible image quality. Aero-thermal interactions between the site topography, enclosure, internal systems, and optics are complex. A key parameter for image quality is the thermal gradient between the terrain and the air mass entering the enclosure, and how quickly that gradient can be dissipated to equilibrium. Because the thermal gradients are highest near the ground, an important function of the GMT enclosure is to minimize the flow of ground-layer air entering the enclosure. By doing so, a more uniform air density above the telescope will enable higher image quality. The design of the GMT lower enclosure is driven by equipment storage and access requirements but also directly impacts the origin and quality of the air entering the enclosure aperture. To ensure the highest quality GMT optical performance, Computational Fluid Dynamics (CFD) models and specialized analyses are utilized to evaluate several lower enclosure designs for their ability to limit the amount of ground-layer air entering the enclosure aperture. Lower enclosure designs with traditional solid outer walls promote the formation of "necklace" vortices, which tend to direct near-surface air, containing steep thermal gradients, into the enclosure aperture, potentially reducing image quality. Modifications to the lower enclosure, such as perforating the outer walls, are shown to suppress these necklace vortices at the expense of added structural complexity and/or reduced internal storage space. Initial isothermal CFD simulations defined the minimum height above terrain reached by the flow-path upwind of the observatory as a proxy to characterize the quality of air entering the enclosure, with lower heights associated with steeper thermal gradients. Based on these results, the most promising designs are further refined and subjected to additional higher fidelity CFD analyses, which includes a terrestrial thermal boundary layer. These simulations are also surveyed to quantify the aero-thermal environment along telescope optical paths, permitting evaluation and comparison of the predicted optical performance of the final candidate enclosure designs. Results from preliminary water tunnel testing of select lower-enclosure designs have increased our confidence in the CFD simulations.
机译:目前正计划在智利北部的拉斯坎帕纳斯峰建造巨型麦哲伦望远镜(GMT)。 GMT是下一代超大型望远镜的一部分,它将成为世界上功能最强大的地基望远镜之一。由于GMT设想有较大的孔径,因此需要对进入和在外壳内循环的气流进行表征和控制,以保持尽可能高的图像质量。站点地形,外壳,内部系统和光学器件之间的空气热相互作用非常复杂。图像质量的关键参数是地形和进入围墙的空气质量之间的热梯度,以及梯度可以多快地消散至平衡。由于靠近地面的温度梯度最高,因此GMT外壳的重要功能是最大程度地减少进入外壳的地面空气流量。这样,望远镜上方更均匀的空气密度将使图像质量更高。 GMT下部机壳的设计受设备存储和访问要求的驱动,但也直接影响进入机壳孔的空气的来源和质量。为了确保最高质量的GMT光学性能,利用计算流体动力学(CFD)模型和专业分析来评估几种下部机壳设计的能力,以限制进入机壳孔径的地面空气量。具有传统实心外壁的下部外壳设计会促进“项链”涡流的形成,这些涡流倾向于将包含陡峭热梯度的近地表空气引导到外壳孔中,从而可能降低图像质量。示出了对下部外壳的修改,例如在外壁上打孔,以抑制这些项链涡流,但以增加的结构复杂性和/或减小的内部存储空间为代价。最初的等温CFD模拟定义了天文台的流径逆风到达的地面上的最低高度,作为表征进入机壳的空气质量的替代指标,较低的高度与较陡的热梯度相关。根据这些结果,最有前途的设计将进一步完善,并接受包括地面热边界层在内的其他更高保真度的CFD分析。还对这些模拟进行了调查,以量化沿望远镜光路的空气热环境,从而可以评估和比较最终候选外壳设计的预测光学性能。某些较低机壳设计的初步水隧道测试结果提高了我们对CFD模拟的信心。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号