首页> 外文会议>IEEE International Conference on Big Data >Time-aware Subgroup Matrix Decomposition: Imputing Missing Data Using Forecasting Events
【24h】

Time-aware Subgroup Matrix Decomposition: Imputing Missing Data Using Forecasting Events

机译:时间感知子组矩阵分解:使用预测事件插补缺失数据

获取原文

摘要

Deep neural network models, especially Long Short Term Memory (LSTM), have shown great success in analyzing Electronic Health Records (EHRs) due to their ability to capture temporal dependencies in time series data. When applying the deep learning models to EHRs, we are generally confronted with two major challenges: high rate of missingness and time irregularity. Motivated by the original PACIFIER framework which utilized matrix decomposition for data imputation, we applied and further extended it by including three components: forecasting future events, a time-aware mechanism, and a subgroup basis approach. We evaluated the proposed framework with real-world EHRs which consists of 52,919 visits and 4,224,567 events on a task of early prediction of septic shock. We compared our work against multiple baselines including the original PACIFIER using both LSTM and Time-aware LSTM (T-LSTM). Experimental results showed that our proposed framework significantly outperformed all competitive baseline approaches. More importantly, the extracted interpretative latent patterns from subgroups could shed some lights for clinicians to discover the progression of septic shock patients.
机译:深度神经网络模型,尤其是长期短期记忆(LSTM),由于能够捕获时间序列数据中的时间依赖性,因此在分析电子病历(EHR)方面已显示出巨大的成功。在将深度学习模型应用于EHR时,我们通常面临两个主要挑战:失踪率高和时间不规律。受原始PACIFIER框架的启发,该框架利用矩阵分解进行数据插补,并通过包括以下三个组件来应用和扩展该组件:预测未来事件,时间感知机制和子组基础方法。我们以实际的EHR评估了提议的框架,该框架由52,919次就诊和4,224,567次事件组成,以尽早预测败血症性休克的任务。我们将我们的工作与多个基准进行了比较,包括使用LSTM和时间感知LSTM(T-LSTM)的原始PACIFIER。实验结果表明,我们提出的框架明显优于所有竞争基准方法。更重要的是,从亚组中提取的解释性潜在模式可能为临床医生发现败血症性休克患者的病情提供一些启示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号